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EDITOR'S PREFACE

VOLUME |

This was the twentieth Geophysical Fluid Dynamics program at
Woods Hole. Stephen Childress of the Courant Institute was our principal
lecturer. Dynamo theory, with all its interdisciplinary facets was our
central theme. Geomagnetism and the solar magnetic cycle were brought
closer to comprehension, yet none claimed a detailed predictive theory
was near at hand. Perhaps J. Keller's lecture, entitled ''Smooth equations
for rough problems', best characterized the nature of these studies. Even
then, the smooth equations are quite nonlinear, with finite-amplitude
magnetic solutions yet to be explored. Lectures intertwined with those
of Childress exposed us to topics beside and outside his emphasis on a

convective geodynamo.

The fellows of the summer program were responsible for the notes
of the principal lectures and checking their content with Childress.
Extended abstracts of addresses by program staff members and the ten
participants in the July mini-symposium on magnetohydrodynamics were
prepared by the speakers. The eleven lectures of the Fellows are recorded

in the second of this two-volume report.

Mary C. Thayer has gathered and typed all the abstracts, lecture
reports and fellowship papers -- for a twentieth year! Fellows and staff

salute her skill and patience with an often recalcitrant crew.

We thank particularly Dr. Ralph Cooper, and through him the Office

of Naval Research and the National Aeronautics and Space Administration for

continuing support and encouragement.

Willem V. R. Malkus
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COURSE LECTURES

by

Stephen Childress
New York University
Courant Institute of Mathematical Sciences

Lecture #1. INTRODUCTION TO GEOMAGNETIC DYNAMO THEORY

1.1 Historical Introduction

The problem of explaining the origin of the magnetic fields of the earth
and sun is a difficult one, and only in recent years has substantial progress
been made towards its solution. The following is a list of some of the decisive

contributions made by scientists and mathematicians who have tackled the problem.

1919 Larmor asked how a rotating body, such as the sun, could become a
magnet. One of the suggestions he put forward was that the magnetic field was
maintained by the motion of the electrically conducting fluid of which the sun

is composed.

1934 Cowling found that a steady axi-symmetric magnetic field could not
be maintained by fluid with an axi-symmetric velocity field (with the same axis
of symmetry). This was a 'great step backward' for dynamo theory, since it is

very natural to look for axi-symmetric fields when dealing with a rotating body.

1946 Elsasser studied non-axi-symmetric magnetic and velocity fields.

1954 Bullard and Gellman pointed out the importance of differential rota-
tion for generating a ''toroidal' field from a ''poloidal'' one, and the importance
of non-axi-symmetric motions for distorting the toroidal field to produce ''pol-
oidal'" field. (We shall define these terms presently.) However, the fluid mo-
tions they considered were not capable of indefinitely sustaining a magnetic
field.

1955 Parker provided a physical argument to explain how irregular upwell-

ings of fluid could produce a mean magnetic field when their inductive effect
was averaged over space and time. This was a major break-through in dynamo

theory.

1964 Braginskii considered nearly axi-symmetric systems with very high

fluid conductivity, using a formal asymptotic procedure.

lgéé Steenbeck, Krause and Radler considered turbulent dynamos. the

length scale for the turbulent component being much shorter than that for the

mean component. Since this paper., much work has been done on turbulent dynamos.




1.2 The Earth's Magnetic Field

The earth can be regarded as a sphere of radius 6.4 x IO6m, of which a
shell of inner radius 1.4 x 106m and outer radius 3.5 x 106m is composed of
electrically conducting fluid, mainly molten iron. Inside the shell is a solid
core, and outside the shell is the mantle, which can often be regarded as a
solid insulator, although sometimes its visco-elastic deformations or small con-
ductivity need to be taken into account. The basic facts of the earth's magnetic

field which any theory must explain are:

(A) The field is permanent; that is, it has been in existence for the whole

of the earth's history, thought to be about 109 years.

(B) There are large-scale changes of structure, namely reversals of polar-

ity, on a time scale of order 105 years.

(C) There are small-scale variations on a time scale of the order of a hun-

dred years.

Table 1 shows estimates of the main physical parameters of the earth rele-
vant to the subject-matter of these lectures. Since the decay time, 105 years,
for the earth's field in the absence of any fluid motions in the core, is much
less than the age of the earth, 109 years, it is clear that we must look to fluid

motions for the explanation of the persistence of the field.

The reversals of polarity have been statistically analysed by Cox (1968)

who claimed that the probability that the time between successive reversals lies

exp (— - )a“-'

to

between t and t + dt is

o
where ty = 2 x 10° years. However, it is questionable to fit a particular type
of probability distribution in the absence of a theory of the underlying mech-
anism. Further, as more data becomes available of the history of the earth's
field, it may become necessary to put in more reversals, so that what is now be-
lieved to be a period of one particular polarity may subsequently need to be
split into smaller periods of different polarity. Thus statistical formulae may

need to be revised.

The most interesting feature of the small-scale variations is the west-
ward drift of the non-dipole field. After performing a harmonic analysis of

the earth's field it is easy to remove the dipole component, and a contour map

can then be drawn showing, for example, lines of constant vertical component

&




Table 1. Physical Parameters of the Geodynamo

Symbol Meaning Units Value
L core radius m 3.5 X 106
o electrical conductivity m'3k"sq2 = mho/m 3 x 100
n magnetic diffusivity m2s ™! 3
T diffusion time s 4 x 1012 = 105 yr
P fluid density km™3 10H
Y kinematic viscosity m2s-1 1076 (2)
s rotation viscisity 7! 7.4 x 1072
T core temperature O 4ooo
Cp specific heat m2s=2 Ok-1 670
A thermal conductivity mks™3 ok~! 60
s coef.of volume expansion ok-1 5 x 1076
X thermal diffusivity m2s”! 1075
g accel. of gravity ms ™2 5
Vel mean temp. gradient oK m~! 2 x 1073(2)
B magnetic field ks']q'I 1072 = 100 gauss
Va Alfvén speed ms ™! 10°1
v speed ms ™1 1074
Q core heating rate m2ks™3 1012-1013
1 gauss = 1074 kq"s-]
1 joule = 1 m2ks™2 = .239 calorie
1 volt =1 mzks-zq']
1 ohm =1 m2K s"q'2 = 1 mho™!
AL = B x 1077 mkq=2

of the non-dipole field. The main features of such a map drift westward at a
typical rate of 0.2° of longitude per year, although some features move faster
than others. It is not known whether this is caused by wave motion in the core,
or bulk motion, or both; and it is difficult to do an experiment to find out |
It should be noted that the slight conductivity of the mantle places a lower
limit on the time scale of magnetic effects observable at the earth's surface.

For if 7M,, is the magnetic diffusivity of the mantle, and L its thickness,
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then any magnetic field at the bottom of the mantle varying on a time scale
less than Li/n", will be greatly reduced in magnitude by diffusion. Using an

estimate of Nm s this time scale is about 10 yrs.

1.3 The Basic Equations

The physical quantities needed in the analysis are:

[}

B (x,t) = magnetic field,
i (x,t) = current density,
E (x,t) = electric field,
u (x,t) = fluid velocity
J- = electrical conductivity,
M = magnetic permeability,
n = GC4AT,= magnetic diffusivity.

The equations satisfied by these quantities are the 'pre-Maxwell' equations

and Ohm's Law:

dive = 0 (1.1)
curl B = ] (1.2)
curl £ = 22 (1.3)

i=c(E+u,B (1.4)

The pre-Maxwell equations (which neglect the displacement current term in
(1.2) hold on the assumption that the time taken by light to traverse the
region of interest is small compared with the time scale of the events being
described. On taking the curl of (1.4) and eliminating j and E using (1.2)
and (1.3) we obtain

i—-g-;curl(gt,\ﬁ)+vlv"ﬁ. (1.5)

This is the fundamental equation for B. Equation (1.5), and the Navier-Stokes
equation (with a forcing term of j. B per unit volume), form the foundation of

theories of the evolution of magnetic fields in fluids.

To simplify the problem, we often regard u as being given, and use
(1.5) to determine the evolution of B; the equation is then linear. This is
called the kinematic approach. The resulting problem is still difficult, how-

ever, and further simplifying assumptions need to be made. The most obvious

LY ey W—— r—
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way to proceed is to see when one or other of the terms on the right-hand side

of (1.5) is negligible compared with the other. To this end, let
u

typical fluid velocity,

typical length scale for variation of u and B

Ve leurt (wa Byl wi

InU*B i

3

The quantity LlL/rLis called the magnetic Reynolds number, and is denoted by Rm.

(In the earth's core, Rm is typically about 100). So from (1.5) we obtain

ot = curl (4. B) (Ra>1) (1.6)
22 =~ VB (R <<.1) (1.7)

Equation (1.6) is exact when 'rz:O (perfect conductivity, i.e.d0 = ©2 ), and
(1.7) is exact when u = 0. Equation (1.7) is just the diffusion equation, and
when RM<<1 often gives a good approximation everywhere to the true solution.
When Rm>>) , however, (1.6) fails to be a good approximation in boundary layers,
where diffusion is important, and in these regions a closer approximation to the
full Eq. (1.5) must be used.

1.4 Exact Solution for a Perfect Conductor

The equation for B in a perfect conductor is

gf =curl(u,BY). (1.8)

Taking u as given, this can be solved exactly using Lagrangian coordinates. Let

the position at time t of a fluid particle initially at a be x(a,t), so that

Lt (355>

>_<_(i,o) = a, and let

I

D
Px,t) = fluid density.
el

For any function f(x,t) let the function )c(i,t) be defined by the equation

Flat-f(xlat),0),

and let %? denote differentiation with respect to time, keeping a fixed, so
N
that
S A ST
Dt ot ot <

Then conservation of mass implies that




- B -
P (29 ;'

D = J
P (x,t)
and Dr . -pdivee:
Sk
| Hence (D) = —ﬁ(i;ﬂ £§ (div «)D (1.9)

(This can also be established directly from the expression for the determinant

D.) Equation (1.9) enables us to show that the solution of (1.8) is

E’(l,t)=-£—-%f;—55(%,0)- (1.10)
For (1.9) and (1.10) imply that
D
E(‘DB':) = aou (q" )
and
= . B
P05 = (dive)pp, + D22
Hence B g
el ; ,
; DE D 3«2-_:: BJ‘(Q" o)_ (‘{"V‘:.‘-) Bt
du: da;
= Sab BT:TJB -(J-Ivt:\.)B [1’1("'0)]
L u; ,
s (d,n/u)B‘_' "

which is the same equation as (1.8). This proves that (1.10) solves (1.8). The
meaning of (1.10) can be shown by writing it in the form

B (x,t) , 2x¢ Bi(%po)

oleit) ~Bai B l(a0
and comparing it with

31’,1 d' ’
o a
d ¢ 'an J

It follows that B/p is transformed like a material element, and that the field

acts as if it is 'frozen' in the fluid.

1.5 Dynamos

The fundamental question of kinematic dynamo theory is this: given a volume
V of electrically conducting fluid, which velocity fields u are such that when B
evolves according to (1.5) it does not ultimately decay to zero? This question

will be considered in some detail in Lecture 2. For the time being, define a




dynamo as a system eomprising V, B, u, 7Z such that the magnetic energy

- 2
Y tusyy
a_//S,Dace
is bounded away from zero for all time. (0f course other measures of magnetic

field strength might be used.) |If V is not the whole of space then the condi-
tions outside V must be specified. It is common to take V as a sphere and the
volume outside V as an insulator; this is a good model for the earth's dynamo.
Roughly speaking, for a system to act as a dynamo, the convection term curl

(uaB) in (1.5) must be such as to compensate for the dissipation term 72 V’_B

1.6 A Non-dynamo

Consider the following means of trying to make a dynamo. At t = 0, a
magnetic field is present in a stationary conductor. We wait a time At, during
which time u = 0 and diffusion operates accoeding to (1.6). At time t = At we
instantaneously stretch the conductor and fold it over so that it occupies the
same region of space as before. During the folding, diffusion has no time to act
and so the field satisfied (1.8) (note that lg}: o0 during the stretching and
folding, so that R, = &2 ). Assume that the conductor is imcompressible; then
the field can be intensified by stretching in a direction parallel to B, because
of the term th;/faaj in the solution (1.10) of (1.8). We now repeat the process
by waiting from t = At to 2At and then folding again; this is continued indef-
initely. Thus we alternate between field intensification and decay. By choosing
suitable deformation, the net result might be thought to be a relentless increase
in E_(i.e.\E_kA)oo as t —» @ ), thus giving a dynamo. However, we do not always

obtain a dynamo, and an example of this is now given.

Let the whole of space be filled by an incompressible substance of mag-

netic diffusivity Qo , and at time t = 0 let the magnetic field B(x,t) be
B(ryz.0)= ((B10.0)(am< y<(@m+)l,m=0,21,x2,...)

(-8,,0,0(2m+1) L= y < amb,m=0,%£1,%2...)

as shown in Figure 1. At time At each band of width L is stretched to three times
its original length in the x-direction and folded over on itself to produce the
configuration shown in the second part of Fig.l. To achieve this, we can conceive
of each band being chopped into sections of length L;>> L and then folded into W-

shapes. The end regions of these sections, where the field is not as shown in the

diagram, will have a negligible effect. At time t = 2At, a similar procedure is
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The stretching and folding procedure. (See Section |[.6.)
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used to give the configuration shown in the third part of Fig.l.

The stretching intensifies the field by a factor of 3 (this is a conse-
quence of (1.10), and so we have
_B(x,g,z,.QC\t*) =38 (x,3y,% nat"),
where h =1, 2, 3, . . . It is clear that B is always in the x-direction and

depends only on y and t; so write
B(x,t)=B(yt),0.0)

We wish to find B(y,t) explicitly. Hence the following problem must be solved:

2B 2'8
3¢ "3yt G
tFot, 20t ... )

- o<y e
B(j,nAt‘)=3s (3y,nBt7) (n=1,2,- )

B, lAmlL% <(2m+l)L)
B (Y, i " 1
(50) {—Bo ((1m+;)L.$g<2mL)

The simplest way to colve this is to change the space variable by a factor of 3

at times t =At,248¢, ... So define a function f(y,t) satisfying:

i:q(t)_& t>0 )
ot oy? =eoe Yo ©O

.)C(f/:°>=[’ (2mL £y < (zm+1)L
ol ((2m+l)L.<_ y < ZmL)
(The fact that o*f /agz does not exist at t = 0 does not matter; it will exist
for all t > 0.) The function N(t) is defined by
n(t) = M. (o<t < at)
9ne (ats<t< 24t)

e (28t <t < 3pL)
ete.

Then B(y,t) is given by
Blyt)=3" B, £ (37 Cy.t)

where AV(t) is defined as the integer h satisfying
nat ¢t < (n+i)at.

It only remains to find f(y,t). By putting




. 1D =

00 ’
7((5,t):h§=oAn (t)Sm <2h-rl)n '% ?
It is easily seen that

e t "
y & (2ne)) 7 .
}<7pt)= -ﬁ_—n?; ‘z‘n—“‘ exp {—- L,_ £ Q(t)dt}ﬁn (2-“*‘)77 %,

where N(t)

n(t)=9""n,
We can now show that B(y,t)—> 0 as t —» o0 , uniformly in y. For

l7C (y,t)JéezP{- %i:(t)dtjl %goﬁiﬁ sin [znfl)%,‘j-l

- ool fnion]

Now when t>2 at , we have

. N@®)AE N(E)-)
T (T)dT =9 CAt
én( Mr?[/vm-n)m- Ll Bas
and so
s
[f' (j,t)l < QXP {-. _911_1- * Qo At}
Hence

'B(‘j»t), o 3N(“ezp {__ 5».7?:9~(t)7f t}

and so the magnetic energy density tends to 0 as t—> oo . Thus the stretch-
ing procedure described above is not capable of sustaining a magnetic field.
The physical explanation of this is that the stretching increases the field by

a factor 3N(t), but the diffusion decreases it at least by a factor of

T oM(t) )
exp{-§t;9 q,at}’
clearly the latter term is dominant except possibly during an initial period,

This is in fact a feature of all two-dimensional systems where there are no

z-components of any of the fields, and everything is independent of

An alternative procedure is to adjust the times between foldings so that
the energy does not decay. But it then turns out that the time intervals re-
quired become shorter and shorter so rapidly that the sum tends to a limit as

the number of them tends to infinity. So this method does not work either.

It is of interest to contrast this situation with what might be achieved

by three-dimentional deformations. Alfven has suggested the process shown in
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Fig.2, which, at each step, doubles the field intensity at the expense of a

small "x-point'' where diffusion can be expected to be important. Nevertheless,
diffusion penalty here would appear to be quite small. Unfortunately there is

no simple way to compute the process and establish that a dynamo effect occurs

when Q #£0.

I /5

Fig.2
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Lecture #2. SOME NECESSARY CONDITIONS FOR DYNAMO ACTION

(2.1) The Rate of Change of Magnetic Energy

In this lecture we shall consider a finite volume V of electrically con
ducting fluid, of constant, uniform magnetic diffusivity YL , surrounded by a
N
motionless insulator occupying the rest of space, V. Then as shown in Lecture #1,

the equations for the magnetic field are

—%E :Curl(g_t,\ﬁ)+qu_f}’,v-§:0 (in V) (2.1)

curl 8z0,V-B-0 (in V), A

where u is the velocity of the fluid. The boundary conditions on S, the surface
of V, are

[n-81=0, [nx8] =0 (2.3)

I:_V),\g] = 0 (2.4)

where [ ] denotes the jump across S. The first equation (2.3) follows from
div B = 0, and the second follows from curl B =/A:i, since there are no surface
currents and hence j is everywhere finite. Equation (2.4) follows from (1.3)
and boundedness of B. Equations (2.3) and (2.4) say merely that B and tangen-
tial E are continuous across S. We also assume that there are no 'sources at
infinity', so that

‘_g l - 0(r’3) as r-— oo (2.5)

where r = lXJ . In the kinematic theory, we take u as being given, and so
(2.1) = (2.5), together with the initial value of B everywhere, provide a com-

plete specification of the problem of determining the evolution of B.

The magnetic energy is
| U
Em(t)=_(x:: poBdv,
V+yV
and we now derive two expressions for dE_/dt, using the equations above plus

the equation (1.3),
curl E = -98/at.

\le also use the fact that
[El= 0(r) as r— oo, 2.6

(since the charge is confined to the finite region V), and we use Ohm's Law
(1.4) in the form

Neurl B=E+u.8 (2.7)

L e I e T
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Thus dE, °B
e v @.EJV
V"’G~
= B.curlEdvV

»
I

The first term vanishes (using the divergence theorem and (2.5), (2.6) and the

second term is zero in V. So by (2.7) we obtain

dE,
L sife (8 et 8 av- 3 f(eu 87 av =

\4

This is our first expressien for dE m/dt. Using the fact that
Ju(Bacurl @)d v fu_ [3rad(+ BY)-B. va}dv
{“’Jax (48,8)-w; B xax }‘iv

we can obtain a second expression provided that we assume more, namely that

div u=20 (incompressible flow) and uon S. Then the first term above is

2 [
j_D‘L: (LLJI Bx BK) dV=0,
by the divergence theorem, and the second term is
Jur
)dVv= 5{-3_ u;BuB;) - 2% B, B; ) d
(s (a,m)av=- [ {3 (us®n2)- 22 B} av
The first term here is zero (by the divergence theorem again), and we are

finally left with

|
Su—-(@.cml_B) dV=SB,; Bj&gsd\/v
where v . VB'X’
e I el o I 9
C‘J i (3‘!; . Bui) 1
Hence from (2.8) we obtain a second expression,
L. & (BB AV - T f (eurl BYAV. (2.9)
t "M / J "

The basic difference between (2.8) and (2.9) is that u enters (2.9) only through
its spatial derivatives, while it enters (2.8) only through its undifferentiated

values. ;

In both (2.8) and (2.9) the first term on the right-hand side represents
rate of creation of magnetic energy by the agency providing the fluid motion, and

the second term represents rate of destruction of magnetic energy by ohmic decay.
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(2.2) Two Necessary Conditions for Dynamo Action

We say that a velocity field u in the volume V defined above capable of
dynamo action if for some initial magnetic field there exists a constant Er?v

strictly greater than zero, such that
o
E, () >Enm forall tzo

Hence if it is possible to find a function f such that

%%—"(t)éf

then a necessary condition for dynamo action is that f is not always negative

(when B is not everywhere zero). It is shown below that Eqs. (2.8) and (2.9)

provide us with two such f's. We need to use the length i— defined by
2
| . S (Curl _B) dVv 1
—5 = min v ~ :
E BeB| (. B*dV J
vV ~

where _£B is the class of admissible functions over which the minimum is found,

taken to be the set of all solenoidal fields continuously differentiable in V,
irrotational in ?/, continuous across S, and O(Y-a) at infinity. (It can be
shcwn that if V is sphere of radius L, then i‘-‘ L/ﬁ.) Let uy be the maximum
value of Iil , and let lrn be the maximum eigenvalue of the tensor (€,;J' Y. In
each case the maximum is taken over all time and all X in V. [t can easily be
shown that if u is not everywhere and always zero, then .km?O. Using the

Cauchy-Schwarz inequality and the definition of &L we obtain

IS"Q"'(@AC“T‘ _@]CIV‘ < U-,,,g,@[ | curl E\dv

& U [{)glzaw“ g/‘lmrl Blde}] &
< u.mef {]cuvl §)LalV,

and

Us‘.@.e;javl & X iug(‘otv-:- Am § 1Bl oLV
v

v+ v

P 1m‘f1.§ lCuriglzd\/

v

[}
Q.

Hence (2.8) and (2.9) give the inequalities

dE >
Ttmg%—(—.]..._“.‘ﬁé”) glcurlgl dV 13,163
Wil Apt) et dy
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Therefore two very simple necessary fonditisns for dynamo action are
W, £
o Sl S S _A_L>l

L

Note thatlinﬂﬁ/h is the magnetic Reynolds number based on the length scale o&.

If V is convex the maximum distance apart of any two points in V is denoted by
D, then by the vector mean-value theorem
Um < D).m-

If we regard &L, D, and N as given, then (2.11) and (2.12) imply that any
velocity field permitting dynamo action must be such that w, and )w” lie with-
in the shaded region shown in Fig.1(a). We can express this result in terms of

the dimensionless variables defined by

D
dzb 5 A:__}ah\T;? Rm: u;[\ .

& -

Fig. |

v

Amn

NG
| N
~
: (&) \
\ e N Nk

az|

\ARm=c<"
A necessary condition for dynamo action is that the parameters shown lie in the
shaded areas. (See section 2.2 for the definitions of these parameters.)
Then (2.11) and (2.12) become
3

ARm>o(, AZ,, Rm>°<,
and so regarding & as given, we see that & and R, must lie in the shaded region
shown in Fig.1(b). It should be emphasized that these conditions are not suffi-

’ cient for dynamo action.

l.h.lIIlII....IIlIlIII..IllIlIIIII.-III-ll-Ih-nn-- dtaaiiodit . it
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It is very plausible that an inequality such as the second part of (2.11)
should be a necessary condition, since it was shown in Lecture #1 that shear can
greatly intensify B by stretching the field lines. The first part of £2.11) is
not so obvious, however, because this inequality depends only on the magnitude
of u, not its derivatives. Note however that we have not had to select a special
coordinate system, so up could have been chosen relative to any convenient coordi-
nate frame. In particular, in a spherical domain we deduce that core motions must

differ from solid-body rotation by an amount u_ consistent with these inequalities.

m
It is very probable that these estimates have counterparts in electrical
circuit theory. The inequality involving ;Lnn was first derived by Backus (1958)

while that involving u was noted by Childress (1969). There is considerable room

for improved estimates of dynamo action. Recemt;u Proctor (1978) has observed that

Backus' estimate can be improved by 20% if the integral of |§J2 over V is retained
A

in the estimate of Ji instead of extending the integral to V + V). Such refine-

ments complicate the variational problem which must be solved to complete the esti-

mate, but presumably move us closer to realistic estimates for the dynamo process.

It is also possible to sharpen necessary conditions by elaborating the

structure of admissible magnetic fields. We consider next a condition of this kind.

(2.3) A Third Necessary Condition for Dynamo Action

Busse (1975) has obtained another necessary condition for dynamo action by

splitting B up into its toroidal and poloidal parts:

B=curl(Tx) + cur] curl (Px)
This decomposition is always possible for a solenoidal field; P and T are sca-
lar functions of position, to which an arbitrary function of ¥ can be added with-

out altering B. Busse showed that e H
F (4 (pxdve e mex (wox)(38) }VL{VN(@.@} i

where E is again the total magnetic energy, Ep is magnetic energy in the poloidal
part of B, and V is a sphere. It is assumed that div u =0 and u =20 on S, the sur-

face of the sphere. Thus we obtain a third necessary condition for dynamo action:

- (/
, 2Ep \*
mcvvx(ecz)>(5m ) n

This condition is of rather a different type from those derived in (2.2), since
Ep/Em depends on B. As an example of its use, we can deduce, from the fact that

the magnetic field in the earth has a poloidal component, that there are radial
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fluid motions there. This is relevant when considering convection.

(2.4) A One-dimensional Analog

T——r

It would be of interest to solve Eq.(2.1) for B, given some particular
class of velocity fields u, and then relate the necessary conditions derived to
E the occasions when dynamo action actually occurs. Unfortunately this is diffi-
cult to do, because the equation is so hard to solve; indeed, this is why it is
worthwhile to derive the necessary conditions in the first place. So we look
for a simpler equation, which we hope retains the important features of (2.1)
and which we can solve exactly. The corresponding necessary conditions for dy-
namo action can be derived, and then compared with the exact solutions of the

simple equation.

i As such an equation take u and B to be complex-valued functions of x and

isfyi * |
t satisfying 2B 1 28 ,%(“B&)(_.oo(x‘ 0o, t > 0) (2.14) |

2t R ox*

(it is something of an act of faith that the solutions of this equation behave,

in some sense, like the solutions of Eq.(2.1) !). Note that (2.14) has been made

nondimensional; assume that this has been done by measuring x in units of L, and
u in units of the maximum velocity, up ; then t is measured in units of L/upy.

The quantity R in (2.14) is then the magnetic Reynolds number UmL/YL ;

The first step is to derive an inequality corresponding to the first part
of (2.10). To do this multiply (2.14) by B* and integrate with respect to x

from a to b, say, to obtain

fipou s (el (36
i[uB] yuB'gE,'dX% (2.15)

Assume that a and b can be chosen so that the integrated parts vanish: this will

be possible if, for example, u and B are space-periodic. Taking the complex con-

jugate of (2.15) and adding to (2.15) gives
b b N

%('3] flx:—fs (LLB*-g—f-?+u. )dz S ’ ' dx (2.16)
& a

Define of by the equation




I

> il lab‘

—= (2.17)
L BeB RS

where ﬂ3 is some suitable class of functions. Now u < 1, because u is meas-

ured in units of up, the maximum value of [u , and so using the Cauchy-Schwarz

inequality and the definition of ot , (2.16) glves

b
flofan e s ([ (380 " 4] 188
i ” & A (2.18)
xR B4
This is the analog of the first part of (2.10). It implies that a necessary

condition for dynamo action is R > . /af , that is
Uy L o (2.19)

(

We now solve (2.14) exactly for the particular velocity field

w(x,t)= GBI (2.20)

where (0 is a constant. Trying the solution
inx+at Fx + Ot |
e tlee™" < Ae" 3 (2.21) |

where n , 0 . n , g and A are complex constants, as yet unknown, we obtain

3 t "-l)z+(a’*+t'w)t
( ai(u 8%)= (n*-)e "
X
_L(A%1x ¢ (BT lw)t |
+A (A1) e & o |
and ‘

a_LB = (TQ' %)einx#d"t ]

+A(€_+ %a.)ei.ﬂzq—&"t’ !

Therefore (2.21) solves (2.14) if |

ﬁ""(n*-l):
a._'_-d.*"':'wl ‘
A((T‘+%:) = -l |
" yade B |
A(R-1) =c+ & |

If it is assumed that B is bounded when t = 0, then ' must be real; so assume

this. Hence a solution of (2.14) is
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intsect (o n ~in-0x + (CY L)t (2.22)
B(X)t)=e "("rT- +F)€
where
n(i-n) =(6"'+ —nR—l)ia'Q Cw ¢ (-”;—')-} (2.23)

We can regard (2.22) as a family of solutions labelled by the single parameter

n, since for given § Eq.(2.23) determines just two available values of O

We are interested in whether the solution (2.22) decreases to zero or
grows without limit as t—— oo . This is determined solely by the sign of
the real part of o~ ; for a given Nn_,the system acts as a dynamo if and only if

the larger real part of the two possible values of o is positive.

We now deal with the case w = O in more detail. Equation (2.23) when

ek (2 e a0

where N:l,,\(l—f'\).

gives

From (2.22) it can be seen that the appropriate length scale I for the solution
B is the larger of | n and l/((\ﬂ) (times the unit( ). For simplicity, consider
o_éné—‘i; then we have f. = L/,/of. Figure 2 shows a graph of 0 as function
of n for O< l’\f-fi , for different values of R.

Fig.2

Graph of 0 against "™ for O V\S-Li when W = 0.
(See section 2.4 for the explanation of these quantities.)

Putting 0" =0 in (2.24) gives RY/n* = l/n - | ; so the necessary and suffi-
cient condition for dynamo action is




T

This can be written as

2
U & e e
< = )7,, IS

from the definitions of R and oL .

Equation (2.27) is what we are looking for. Our aim is to compare it with
the crudely derived necessary condition given in (2.19). Since we are only con-
sidering C= n &£ V2 , we see that they are consistent. Further, (2.19) is the
best possible condition of its type, because a condition of the form unﬂf/r1>l4 E
where €>C, is violated by taking Il close enough to 1/2. In this sense, (2.19)
is a 'good' result about the solutions of the simple Equation (2.1)

Notes submitted by
John Chapman and
Francis J. Condi.
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Lecture #3 CONSTRUCTIONS BASED ON SMOOTHING

3.1 Introduction

In this lecture we shall discuss an asymptotic method for treating the
kinematic dynamo problem. |In general there are at least three methods which have

been used.

(i) Filtering method

(a) Temporal filtering is based on the fact that the fluctuating magnetic
field decays much faster than the mean one. We are interested primarilly in the
mean field. The velocity field is turned on and off periodically. While the
velocity is on, the magnetic field is created. While it is off, the magnetic
field decays. Hence the turn-off time should be long enough to allow the un-

wanted fluctuating field to decay. For example, Tverskoy (1965) applied this

[r—
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method to prove dynamo action by a toroidal eddy in a solid conductor.

(b) Geometric filtering is based on the similar idea that certain har-
monic decay spatially faster than the others. Hence the harmonics will affect
each other selectively according to the distance between sources (see for example

Herzenberg's two-sphere dynamo, 1957).

(ii) Symmetry breaking

Cowling's theorem (1933) does not allow steady dynamos when both fields
are axially symmetric. This has been studied by Braginsky (1964, 1965). In this
method the variables are divided into axially summetric and small asymmetric
parts.

(iii) Smoothing

This method is the main topic of this lecture. Here the variables are
assumed to consist of a spatially rapidly varying part (small length scales =)
and of a spatially slowly varying part (large length scales =;£). An averaging
process (e.g. over an intermediate scale) is essential to separate the mean field
from the fluctuating field. This idea has been initiated by Parker (1955) and
been explored since then by Steenbeck & Krause (1966), Childress (1967), G. 0.
Roberts (1970), Moffatt (1970), and many others.

3.2 First-order smoothing ;

We start with the induction equation:
o8
== - NUB-Ux(uxB)=C

where L = WL, + W, and §= §e+ B, . u, and [3, are respectively the smooth
(large scale) parts of (¢ andfz, while @, and 3, are their fluctuating (small
scale) parts. We define an averaging operator { * > . As we have noted, this
might be a spatial or temporal average, but it might also have other meanings,

e.g. ensemble averaging. |

Then by definition
<159,7>== Y, <:£§lj> =0

(Bod>= B 5 (B =0 |

Also to simplify the notation let us introduce the following operators

Lz {;—r)v‘—vx (& x )
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2 .ok ,
L2 0V = P ene))

L= -0x(&x )

With these above defined operators the induction e.q. (3.1) can be

written as:

].B=0 (3.2)

By applying the averaging procedure to (3.2) we get:
L0§0*<L\’§\>=0 (3.3)

where the terms <L., §°> and <Lo B.b are assumed to vanish due to the
""'smoothness'' of Lo and Qo .
Subtracting (3.3) from (3.2) we get:
L‘Igo+1“°§l: <L,Q‘>~L‘Ql (3.4)

In the first-order smoothing the right-hand side of (3.4) is neglected.

Hence in this case we have (formally)

-1
B,o=—-L, L, B, (3.5)
Then (3.3) gives =)
LoBo= &L, L'LYBo (3.6)
which is the equation determining [3, . Given the solution ,@0 of (3.6) the

15t order) solution for the complete magnetic field is then

B = B.-Ls B (3.7)

approximate (

if (3.6) is simpler than (3.2) we have gained something, and this seems likely
since now the coefficients are smooth functions. Compared with L, B, = O,
(3.6) has a new term on the right-hand side, which is crucial for the dynamo action

in those cases where M, fails by itself to give dynamo action.

To have a rough idea of the physical conditions under which this first
order smoothing is valid we assume 4, =2 0 . Then (3.4) gives

B 2
22 g9 Bi-9x (% Bo)=x (wix B)-<vx (4,x B,

Cmpr!. Sy T

W
"(w06) ouf) 0 G 055 e

where U) /e)(.d_'are the characteristic scales of W, . For the right-hand side

to be negligible compared to at least one of the first two terms on the left-

P N W e
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hand side either U[w or U% has to be small compared to 1. The first condi-
tion does not involve the resistivity ¥} and that means that one must be care-
ful when using it. The second condition turns out to be sufficient when U/[w is
arbitrary and O(l). In what follows we use the magnetic Reynolds numbers /R and

R, based on V4 and oL respectively.

Also, the mean equation (3.3) gives:

2 3 -nU*8, = <vx(w,xB)2
‘\-—v\/

aF =2 - \\:-Tféé‘-/ (3.9)
o(3) ofLr 0<%

where i , T are the characteristic scales of é . In (3.8) the fact that the
last two terms on the left are comparable gives:
8’2 &e‘ B, = RB@
. U?B
so that the right-hand side of (3.9) is of order ’27—"— which is comparable to

uot’
the terms on the left if a_ >> 1 since R = —{ << |. Thus the two scales

must be widely separated. This is equivalent to saying that Z—— 0<R )

different scales can be plctured in Fvg ] Also from (3.9) we have

(af

a4 wave length ~o£

3@ j Fig.]

When «, # O the situation remains the same provided its magnetic Reynolds is

5 ={
not too large, although the determination of L, is not easy then.

3.3 The o -effect

By the o< -effect (terminology of Steenbeck & Krause, 1966) we mean the
case in which the term <(’é, X ED , in the mean field equation can be written
in the form:

<‘.‘:|X§>=°<Bo (3.10)

where of is a constant. In the general case we have <U-,x B) B where

o is a pseudo-tensor.
~

~
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We consider the periodic velocity field in Cartesian coordinates _4

W,zU(o,cos kx, sin kx) (3.11) 3

To the first-order smoothing Eq. (3.4) gives
ég,t-qv"g, =0 (% Bo)
or 2& -9’78z 8, V&~ 4,78, (3.12)
In (3.12) we can neglect the term ’L&,'Vgo compared to _@o ey, since
£<<f. Hence from (3.11)

gz@ -szgl = B LIk (o‘-sfn kx, cos kx). (3.13)

After a time t such that

i _ oL
T =

the effect of initial transients disappears and (3.13) gives

B =1 Bo;n _RLLYL_(O’ "‘5;'” KX; DS kX)

~ |

we then have

2.
v = .
X g,)::(goxﬁ"o’o):c’é .\Bo

where 100
%

o o o 00
=~ K7n

o006

I f 50 is a uniform field in the X -direction, then the O -effect here

produces a mean induced current <9_L‘X §,> = Jo in the same direction as _@c-

o, ~effect .

Bax > JO&
oy ~ Ampeve's law
Bo?

But in this case there is no feedback upon B,y so that Box would de-
cay away and no dynamo action is possible. Note here the important effect of
phase shift. The flow deforms the field in just the right way to give a max-

imum interaction between the perturbed field and the flow (see Fig.2).

The helicity of W, (terminology introduced by Moffatt, 1970) is defined
as H :<‘£;_L, -V X g,) and is a measure of the knottedness of vortex lines;

in this case we obtain M=-~u?*
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Fig.2

The motion that is next simplest is
w,= U(sm Ky, cos kx, 5in Kx 4 ces Ka) (3.14)
Using (3.12) this gives
‘é;' ~ E%'(B"J Cos Ky - 8“ Sim Kx, Box cos Kx - Boz Sin kg)
and

i
<%"'x’é‘>='y—m (Bo,,e,ﬂ,o)s ot . B

=~ *kp (OO
00O

This model can cause dynamo action by the following interaction:

ol
Bo’_ L —» Jox

or

(oc-eflect

Boni i o -" oy

The cross arrows in the above diagram are ude to Ampere's law. This kind of

interaction is called the o<1;effect.

To obtain | 00

ol
~= & o O

o0 |
we can take

AL}’:(SI‘T) kla +CO0SKe, SIn ke + C‘DSKX’ sin K‘*-COSka) (3.15)




where H is the helicity.

In all of these examples we have
This kind of field is called Beltrami (velocity is parallel to vorticity). In
general orbits of such a flow are known to be topologically complicated.

-

Fig.3. Stream lines for X

and g components of W,
given by (3.14).

+: upwelling

-: downwelling.

Fig.4. Numerical computation
(G.0.Roberts, 1972) of the
growth rate 0, as function
of R and ','é" for &, given
by (3.14).

Y

Figure 3 represents the stream line for X and ﬁ components of the velo-
city field W, given by (3.14). The instabilities take the form of large scale

circularly polarized stationary waves with magnetic field components perpendicular

to the axis of the ''eddies'. Figure 4 shows G.0.Roberts (1972) computation of

L=

L) e g i)
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the growth rate @ as a function of R and R for the same velocity field.
The growth rate increases to a maximum and then decreases as FQ—’ decreases.

Figure 5 shows the lattice of straight particle paths (correcting stagnation

points) for the three-dimensional motion (3.15).

Fig.5. An element of the orbit structure of the motion (3.15). All
labeled points are stagnation points, equivalent under a rota-
tion and translation. All lines are particle trajectories in
the indicated direction. Lines such as OP involve a divergence
(in the plane ABC) and a convergence (toward the plane DEF).
Note the helicity evident in the structure.

Note that Fig.L4 bears a resemblance to Fog.2 of Lecture 2. It can
easily be seen that 1St order smoothing is actually exact for the one-dimen-

sional analog.

3.4 Periodic dynamos

In all three examples in Sec. 3.3 the velocity fields w are steady and
periodic in space. |In general when W is periodic in space and time we expect
the magnetic field to incorporate the same periodicity in addition to large-
scale components (G.0.Roberts 1970, 1972; Childress 1967, 1970).

We now consider, for such periodic fields, some interesting points related

to "“infinite-order' smoothing of the induction equations. Consider the modal

form ! §o=l‘zi£.7’s+d'f (3.16)

With W, given to be periodic we can write the mean field Eq.(3.3) as:
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(ow r\’q,)ﬁ =L'QX[Q(Q,O‘,R,%,)'IJ

where n = ID{ . (We show how Za is derived in the next lecture.) The matrix

f5 can be written in the form of a cumulant expansion

ey
~J=2~

—~

in terms of cumulants of the velocity field &, . The é) have some nice sym-
metry properties and in particular éij <0’ o,l?,kh)is real and symmetric or anti- L
symmetric depending on whether j is even or odd. Also note that ;
Zaz <Ch 0, R, 95,>‘= o ¢ f
It is interesting to note that in order to have dynamo action it is suf- [

ficient that det(éz(0,0; R,l:j-‘)) be different from zero, since in this case two

eigenvalues of thi;’matrix are of the same sign ( ocz;effect). This is true for F

almost all periodic motions (in a precise sense based on the representation of

the admissible Ei , as a Hilbert space, and the non-dynamos as confined to a ''lower

dimensional' hypersurface in that space). Also, A_t(o.o, R, {4—,) is analytic in ‘
R and thus if éz(o‘,o, R,4,)is such that det (.-/é\,‘(o,o, O,g)) # O then det

(A (0.0,R u)#0for almost all R.
=~ A~ gt e
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Christopher L. Frenzen
and Pham Giem Cuong

Lecture #4 MEAN-FIELD ELECTRODYNAMICS

4.1 Smoothing to all orders

Applied to the equations of magnetohydrodynamics, the smoothing method
has come to be known as mean-field electrodynamics. As a theory it encompasses
not only the derivation of the mean-field equation but also the solving of the
mean-field equation under conditions pertinent to the dynamo problem. We ex-
amine these two aspects of the theory in this lecture, beginning with the gen-

eral form of the mean-field equation.

As in the last lecture we let

Lo =2 -nv*-9x(&,x (+))

-
L, = —x (gx (-)
Using these, the dynamo problem can be written

(Lot L) B =0

We now define P as an averaging or smoothing operator.

P(-) = < (*)>

We require only that P be a projection, i.e. that it satisfy

Pr=P

It is important to note that when u is small scale Lo" Ly may not be a ''small"

1]

operator on B even though LO—'(L] = PLy) is "small''. (This has already been

used at the level of first-order smoothing.).

Since

(Lo + L})B =0

we have ((Lo + Ly ~P{Lg + L3))B =0
or (Lo = Plg)B = = (L; = PLy)B

We assume that P and L, (or Lo") commute, that is

Pl = LoP, PLg™! = Ly TP,
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and that L produces only ''rough' field when applied to smooth:

Bl, P = 0.

Commutation implies
(Lo = PLGJB = Ls(B ~ PB).
Letting PB = f equal the mean field, then
Lo (8- F) = (Lo - PLo)B = - (L1 = PL{)B.
By inverting L,, this can be rewritten as
B-f=-Lo7(Ly - PLy)B =SB

where the operator S is
S =- Lo MLy - pLy).
Hence

(I ~S)B=F.

If S is a small operator as claimed (the formal smallness of S is implied by

the smallness of R= é%e(N'4é£ from the last lecture), we should be able to

write B = (1-5)7Tf.
The mean field equation now becomes
PLoB + PL3B = L f + PL;B
which implies
Lof + PLy(1 - 8)~1f = 0. (4.1)

This is an exact equation for the mean field.

We can easily rederive first order smoothing from this equation as
follows:

We have approximately: (I - s)! ~ | +5

Substituting into the mean field equation, we get
kof + PLY(I + S)f =0

or

o
]

Lof + PLy(-L,~ (L) - PLDE

Lof = PLy Lo™' Ly £ (since PLiLy"'PLy = PLiPLy" 'Ly = O.

0f course, one may also use the previous method in which

o= PE, B=-PE =By, bty == 14k,

We then again have

. 3 . " [P TR v o ? fi




——
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-
B, = L', BosLoBo+ L, BY= LoBo~ Liks L')ﬁo: 0.

This simpler sequence of steps is all that need be considered if one stops at

first order.

The full mean-field equation has, however, a much richer structure. It
can be thought of, at least when l? = LL(/Q ““14&LJIS small, as containing a
double expansion, both in R and in the ratio —8/%£ of spatial scales. (A '"slow'
time derivative in the mean field equation is regarded as order 71/;fl'and counts
in the ordering as equivalent to a double space derivative.) A symbolic repre-

sentation of the expansion goes as follows: First we write (upon expanding

(1 -s)"Vin (4.11)
20 12
Lof+ IXE Lif =0L; () ==Plex 57" ()

J =2
The operators L: have dimensions of a speed U and an order of magnitude (after
o -1 - .
division by U) of C>(f?’ ). Moreover, it can be shown that L; involves only
the jth order cumulant of Wy
Second, each Lj is, when expressed as a sum of a series of differential

operators, formally of infinite order. We can then write

[>=4
Lj:ZL

]
where b K
UL, = O(R™(E/£)").
In customary terminology Lop represents the o< -effect and Ly tne "/ﬁ-effect”
(when ug vanishes). The last effect thus accounts for large-scale gradients of
the mean field insofar as these affect mean induction. Because of the curl in
(4.2) we see that the /3 -effect involves second derivatives of the mean field,

and hence the capacity to modify the effective diffusion.

4.2 Examples

1) As we saw in the previous lecture it is easy to compute for certain simole

motions. For a progressive wave of the form
d=Usink, sn(f-P)), §=kx +wt,

we have, as the only non-zero entry in the pseudo-tensor
-ljin k’sinn¢
n - w’~+ rl"K"
Note that if cas# O the effect vanishes in the limit ‘)Z—aO. (We consider the

matter of small and zero resistivity below in an appendix).
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2) let W = WU, be periodic, solenoidal, and representable in the form

o .
U2 (k,w)el("( iy
Rek,we

where K and {L are suitable sets. As we noted previously, the mean field

equation, if 7
f=e

has the form

<0‘+YLYI) = xé.f‘
The matrix Ci has the cumulant expansion /3 = ;?2 é}} , and if we write
2

'y
At =ejf +Bijnfing + 0(n*)
we obtain the o and /3 effects with

iUt 2: €idm 1} u A

S e L'w+rLk’-
gis R ( 26l ks B, €A ,u,s)}
g (lezf‘l‘)’ fw +n R

3) For stochastic W with energy spectrum tensor éi_i (4_3,00) , expressions

for & and /3 can be obtained from those just given by the replacement
’ -
S M) — ((&5 () dkde
K, =

The expreséion for /? is equivalent to that obtained by applying first-order

smoothing to a mean field with constant gradient, up to a distant surface in-
tegral in wave number vector space; the latter will vanish for most physically

realizable flows.

k) An important generalization of the method allows W, to have, in addition

to its basic small-scale features, a slow variation of structure. The computa-
tion of &X in the first-order theory treats such motions as if the slow varia-
tion of parameters were not there, so there is no special difficulty at that
level. A formal study of this and other generalizations has been carried out by
Roberts and Soward (1975).

To take one example that will be important later let

m

—

ot
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W= (~Fsimhxcodaz,sm KK ten az,con Rx sin aw)
If &/f << | this can also be written
w =(0, %1 %) sin (Rx +a2)x (0, --1)sim (Rx-az)+0(a/R).

Thus & is approximately the sum of two nearby modes in '/_g—space, each having
components in phase. The full spatial average of helicity is, moreover, zero.
However, the two modes in combination produce a non-trivial o< -effect, given by
k3
i Y d 2 a 5
oLy =L —R—QSM 2ar+ 0(a/r)

4.3 Boundary-value problems

We now examine several examples of boundary value problems arising in

mean field electrodynamics.

Consider the boundary value problem for the kineamtic oL"-dynamo ina
slab. This model relies solely on the o<-effect; we take Uh,= O so that there

is no contribution from the 7 X (u.ax Bo)term.
The model is as follows:
B = (B, (2,t)5 0); a two-dimensional field,

and the < matrix is taken to be |

o = &, o
(@]

0 - 0
o 00

The dynamo equations become

aBl = 9184 = 35’
3t 7. D22 B 22

08, ?1-_’8_7. i 273,
5¢ L Jwr < %53

Setting B = B +1 Bz , we have a complex equation
23 38 . 258
6 Lo S P
(which compares closely with the model problem of lecture 2). We assume motion
to occur in a slab O< 2 < L | suppose both magnetic components to vanish else-
Ct+irz
where, and therefore set B=0 at 2 = O,L. with Bz @ o and %o an

eigenparameter, we have the eigenfunctions
o ' 5
Se(1+K) iz [e,aokz 1]
T

B: ed"te—




=k -
Yo
where K = 1= _o(‘zi'
0
% = 2 o4, L
and N:;L' =2n7, n an integer, provided that Ln'd- = -@q—"’T " 4 R= —an-,_

Forn =1 ,/2 > 271 gives dynamo action. There are no oscillatory modes.

2 . .
Induction regenerates the field by the "o ' interaction:

Fig.1

Consider now the same problem in a spherical core. A number of these cases
have been studied by Steenbeck and Krause, and re-examined by Roberts (1972). The
case of constant ;cxol can be solved explicitly and the minimum critical value
of A, (based on sphere radius) for steady dynamo action was found to be 4.49
corresponding to a vacuum dipole field. For the cases where is odd with re-
spect to the equatorial plane the critical R for dipole and quadrupole field x,
while not identical, are so close as to make them for all practical purposes in-

distinguishable. For example wnth

A= &4J3 CL_-?') Ucos 6 5in*8

the dipole eigenvalue is 10.09 and the quadrupole eigenvalue 10.45. An explana-
tion of this coincidence has been given by Proctor (1977), using a comparison
problem which exactly admits these degeneracies and appears to be close to the

realized structures.

We now consider the migratory dynamo model of Parker (1955). Consider an
infinite domain with mean field of form
— A
B: aAix+B)3+—%,—3-|%
where A and [B are independent of y. A is a stream function for the poloidal
field while B is the torroidal field, we take

w, = (0,0b (a) ,O) with -(:—L::— = constant.

The equations are

st . PR




e

ikx+ot

we find

(6+ 1 kz) = ;r[.o( X + R*ex” where ¥ = 'ch;i = constant.

Looking for modes proportional to €

iIf § = ¢r+i6¢, for neutral stability (6r = 0 ) andex <<1,267 Rzhot o
) 7

or 6;__ o ¥ so waves propagate in the direction of negative X when o § < 0.

T ank

Applied to the surface of a fluid sphere, these waves suggest how the poloidal
field components migrate across latitude lines under the combined influence of
microscale motions and large-scale subsurface shear. This is particularly in-

teresting because of the migration of sunspots to the solar equator.

These migratory waves illustrate what is known as the ' X-~W!'" effect.
When X<$ 1 and & ¥ = O(1) the O("f\"term in the dispersion relation may be ne-
gi Simultaneously .A << B,

and this is the most reasonable parameter range for the geodynamo. In this

limit, the "o~W" effect looks like

glected, as may the =C term in the equation for

A B
w (=4 Fig,2
. J <X¥ >0
Jy q
Z Joéi Ty shear y Yeet”
LA ""J; |ine STrefehing , W=
mean freld
Fig.3

1 f/éli4uc¢&

53 - <leet

Wave m ot
*Tiop
A number of < W dynamos have been tried in a spherical core. For a
recent assessment see Roberts (1972); see also, Deinzer et.al. (1974), and
Roberts and Stix (1971). |If one allows for some meridional flow in addition

to the differential rotation responsible for the & -effect, the fields have

the forms
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. = |
Uy=UNt(r,8)1 + VaVX (1, O)L s w=(rsmg) SE

B =xT(r6)r+vsvx (oY

Since we are dealing with axially-symmetric fields there are two principle par-
ities (components parallel or perpendicular to the equatorial plane)
dipole symmetry: By odd, B) even
quadrupole symmetry:B;, even, B; odd.

Roberts (1972) examines a model of Steenbeck and Krause,
X : ok, CoS @,
W = b'o . P-o.

As in the <> cases the dipole and quanrupole critical R, are quite close,
there being a slight preference for the quadrupole mode when o(OYO > 0 and for
the dipole when &, ¥, < O . In both cases the modes are oscillatory. Similar
results are obtained with other choices of o< and W of the same basic parity,

although for some configurations the preference for one of the symmetries becomes

more pronounced.

It is found that the oscillatory solutions exhibit a lateral migration of
poloidal field structures, toward the equator if o(, 3/0 < 0 , thus suggesting

that the physical mechanism isolated by Parker plans an important role in the

oscillation.
For a model of Braginsky incorporating both components of (L, we have
£ == P‘LU— r‘)1 B (cos é)
P=10mré(1-r)* P, (s 6)
s &gé- ri(l—r)i [PI (cosG)—F;.(cosel)

Roberts finds that, in the range .52 < m £ -.012 the most easily excited mode
is a steady dipole when o<, )’, > O , the smallest critical R occurring when
m=-.3. If the sign of & ¥, is reversed, the quadrupole mode replaces dipole,
critical R’ andlmrs are again close, but the sign of m is changed. This sur-
prising symmetry property has recently been discussed by Proctor, (1978) and ex-
plained in terms of the proximity of solutions to those of a comparison problem
where the property holds exactly. |If we were to seek the model most relevant to

the earth, we would have to pick this one, with X/ To positive in the northern

BN omavsond WUPRIRY o miomy DUERS TR
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hemisphere (to select the dipole mode). In the range of parameters studied the
most easily excited fields were steady. In this reapect reversal phenomena are
not predicted and indeed the oscillatory kinematic dynamos are probably mislead-

ing as models for reversals.

Notes submitted by
Christopher Frenzen
and Pham G. Cuong.
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Appendix
The K -effect in the limit
Stephen Childress

We record here some observations regarding the difficult and controver-
sial matter of applying smoothing to perfect or near-perfect conductors. (A

discussion of the problem may be found in Moffatt's book.)

Formally, asymptotic smoothing was seen to be valid if U/fuu << [ and
this condition is independent of ?' . This leads to the hope that rapid move-
ments, or a stochastic field with short correlation time, can be made to achieve

dynamo action in first-order smoothing even for vanishing resistivity.

One immediate point, if one really wants actual convergence of the mean-

field equation, is whether such convergence can ever be achieved for vanishing

)Z . One's suspicions in this regard are confirmed by estimates on an appropriate
norm of the operator S considered above. It is not sufficient that LU&L»be

small, but is sufficient that Llaa)q be small, the condition again involving n-

-1
In fact the condition U /4u<<| is "only'" asymptotic, with (I =9S)  having a
Z g

divergent majorant series of the form
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00 ;

2 (Vg It

J=0
when Yz= O . Of course most frequently this is a minor point, but in at least
one class of dynamos, rapidly periodic in time and periodic in space, first-order
smoothing induces a secondary flow and a mean-field equation with an effective
magnetic Reynolds number Lf:éua. As this last parameter tends to infinity the

o -effect is found to vanish (as in the steady flows considered below).

On the other hand, Alfven's twisting of a torus to amplify the field (lec-
ture #1) is a tempting mechanism and may work for sufficiently small resistivity.
By its very nature, however, this process cannot be accessible to modeling by
asymptotic first-order smoothing, since mean and perturbational fields are compara-
ble during the twisting process. One possibility then, is that there are diffi-
culties to smoothing a perfectly conducting dynamo. In addition, it is not imme-
diately clear what unnatural zero resistivity phenomena might be introduced by
ensemble averaging over admissible motions, if the latter contain singularities
capable of severing and reconnecting lines of force.

Actually little is known about the limit of small n even in the case of
induction by steady spatially-periodic flows. G.0.Roberts' numerical results
(see lecture #3) included some values of o out to R = 64 and these can be com-
pared with calculations based on boundary-layer theory. The latter makes strong
use of symmetry and evaluates o once flux is concentrated near the boundaries

i
. o oy &
of cells. It is found that « = <onsi x R as X — 20 where the constant ob-

tained produces rough agreement with Roberts' values. It may be conjectures that

this ordering persists for any steady motion independent of one coordinate.

For three-dimensional steady spatially-periodic motions one expects concen-
tration of flux into tubes and possibly also sheets. The former can be shown
(using the asymptotics described elsewhere by Proctor) to produce an cX-effect
nominally O (1,4?}, but at the present time there are no worked-out examples to

support this estimate.

A i o e
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Lecture #5 ALMOST SYMMETRIC DYNAMOS

5.1 Graginskii's (1964) solution to the kinematic dynamo problem

Consider the dimensionless equation

b (V)8 -Tau ~ 8 .

with VB =0 and R:il—'- in the limit R—> oo . The time scale of the field
has been taken as the diffusive time scale t = time
It is known from Cowling's theorem that axisymmetric fields cannot main-

tain a dynamo. Braginskii's idea was that fields which were close to axisym-

metric might be able to maintain a dynamo for sufficiently large R . He assumed
z

. . N

8 = BI\Z’(O)“SO t+ o (1)

’ e
i

His analysis then investigates whether the small additional. o(1) components of

W= W(") 0}«-,# ¢ 0{.)@ R——.‘rao

u can act with W to create a kinematic dynamo such that B can be maintained or
amplified. Braginskii sought a symmetric ''mean-field" equation. An averaging
operator P is defined to be averaging over ® . so if

V=V + VPZC + \/?,l?

then 2%

Py ([ vde)iae (—1—17

+ <’T'17 SNVQ d ‘P) i."i

(4

Tt

Ve d?)“f

A velocity field is postulated of the form exemplified by
. # - . oy (b
w=W(z,0)ip+ RV (F (2,0 (y)+ R7* (2,0, 6)
with P72 o,
The results following from this choice can then be viewed as a special asymp-

totic version of 1st order smoothing.
It is found that a self-consistent expansion of B takes the form
Q = B(I'ID)L?* R V, ~ (/’J (21 P) Lg)
3. =) G -3
+2R Jh@“(’np,?),,o(R 2).
2=l

. :
PBY': o 33,2,
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The mean field equations obtained from these fields can be written in a form
almost identical to those obtained for an axisymmetric o« () dynamo from Ist

order smoothing. Given A, u "effective' variables are defined

-A+78

—~

A

eff * 3
‘Vg;‘c =Y+yw, _\_/e;; = t’uq;"!
where o n
¥ s PlRate” Getiy)p
> 5 e :
and

(57 8e) e+ (3 de)ia + (37 da) g -

Then, in the limit R—> oo, the equations are

~

S5 A 07 (e Aeg): (7 g2 ) A + X B
2 ples V(F) = 02 ) B (TH-VA, Y,

~ ? . - (1) 5'
where ot (z,p) is quadratic in R .
These equations are precisely the same as those of an axisymmetric dynamo, with

the exception that the equation for B would also contain the term

(Y‘ (V. A‘.(f))
on the right-hand side. The absence of this term in Braginskii's formalism means

z
that he can only obtain &« «> dynamos (and that o¢ dynamos are not obtainable,

except possibly through higher-order calculations).

Since it can be shown that the same boundary conditions apply to the ef-
fective variables in the boundary value problem, we have two independent asymp-
totic theories which produce the same ''smooth'' mathematical problem. However,
Braginskii's method has the advantage that there is no assumption about length
scales associated with g“). Instead g}l) is chosen to be slightly asymmetric
and the singular limit R —> o0 is used to make possible the expansion of the non-

axisymmetric component of B.

The emergence of the effective variables is startling and led Soward to
reinterpret Braginskii's work by considering it to be an instance of ''diffusive
modification' of the kinematics of an essentially perfect conductor. This point
of view is useful here because the perfect fluid kinematics are close to a sim-

ple form, because the fields are almost axially symmetric.
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5.2 Soward's pull-back method

The idea of this method is to explain the form of Braginskii's equations

by using a transformation property of the perfect conductor.

We are interested in motions close to simple ones, e.g.

J}% AY

1) almost 2-D motions

// pull-back

w =
> X e

~
z

The pull-back maps R to R and straightens out the '‘wiggles''.

v 4
z 2) almost 3-D motions AN
— N e

([a% &

pull-back

In order to erase the ''wiggles' at a given instant we can imagine a smooth vol-

ume-preserving map of space into itself, which we write as
F: x=F,¢t
We want to see the effect of such a transformation on the equations for

a moving perfect conductor. Let fields DB (i 5% ), E (7)1:), l:l.(i/,t) be
given as solutions of

Iy
+
)
~
‘ml 1 190
N
o

>

q 19

Then 3; = VA(U. B)

The Lagrangian form of this equation is




T
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BxL

ow}
ZB (1— 1t) J = 0
This equation can easily be transformed using the transformation ’3‘ and we find

7 { B hatf"”?w

where
By (2 axk
Hence
-375 -V~ (waB)
where B x ~ -
wolx t)= \%}); zt" i ai:."‘
We can now find E()_c_‘t)since E = —-Ww \Lj. Using the fact that F is volume

preserving, So

%] 9%y

€"th ?Ep ai'}- orr g Epcz,r

Then E - F 31‘, = E E}A‘ é ’aih
17 Ox th- ot } o%;
So we see the equations are invariant under the transformation of Z,L_B’,f;‘, ;;
into X, Lj 5 £
However, if we have chosen F oas a null-back to symmeiric flow, we can

average along the direction of symmetry (z for 2-D, ¢ for 3-D). So

p[gf w-YB-8-Vu]-0

i
=S¢ PB+u-YPB -PB -Yu
since the equation is linear in B and since Pu = 0 as u is symmetric.

We now claim we may identify u with Eeff and PB with Eeff of Braginskii
dynamo. This is particularly easy to argue if’g is a steady motion and all stream-
lines are unlinked closed curves, since it is plausible that in this case that
the necessary mapping, % , can be found. In general the method hinges on the
existence of a smooth '3 , and it is not obvious when it exists. All gjfor which
the method works can, of course, be obtained by smooth transformations, Ef‘\ of
symmetric flows u. Since Braginskii's equations are asymptotic for R— e |
the pull-back need only have certain asymptotic properties (e.g. near closure of

orbits).

Having examined how the perfect conductor equations transform, we now

wish to see how the exact equations transform. One finds,




oy
2 VBT u, Tt
where
€= =ij B; *ﬁi)k('g‘i‘)
&ii =N €kl ;3;: aij (a‘i‘:)
Bein= 1 Eine 5 2

It can be shown for choices of ¥ appropriate to Braginskii's special
choice of velocity field (O(R'I/z) axisymmetric part etc.) that the /3éjh term
is negligible and that the equations obtained already, by Braginskii's method,
can be rederived.
Notes submitted by
Judith Y. Holyer
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Lecture #6 CONVECTIVE DYNAMOS: General Principles

We turn now to the full magnetohydrodynamic dynamo problem, and in par-

ticular the convection driven model, which may be diagrammed as follows:

c%;: rotation?

kinematic induction

—

<

"~ magneto convection

heat Tflux

Fig.l

fic preild
mﬂfrnej fre

The most relevant problem - the convective MHD dynamo in a rotating spher-
ical annulus - is quite formidable, and has not been in any sense ''solved''. On

the other hand, one might argue for the existence of solutions as follows:
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(1.) Show that nonmagnetic (B = 0) solutions are unstable to the addition
of field, i.e. infinitesimal magnetic fields are amplified. (In this case, in

the weak-field theory, the kinematic induction uncouples from the dynamics.)
(2.) Show that the magnetic field energy is necessarily bounded.

Given that the dynamo is being driven by applying energy at a fixed rate,
the latter point is very plausible. Today we shall see how it goes for a con-

vective dynamo, driven by heat sources.

We use the term ''convective'' to mean there is some scalar field (e.g.
temperature), affecting the fluid density, which can itself be advected and dif-
fused (one nonthermal process, suggested by Braginskii, involves the floating up
of light elements released during the growth by accretion of the inner core).
There is no real concensus concerning the energy source for the geodynamo, but
we feel that convection, (thermal or nonthermal), is as plausible as any of the
other proposed mechanisms (e.g. core turbulence driven by precession, or baro-
clinic instability analogous to that in the atmosphere). Moreover it rests on a

well-understood process, so that various models can be formulated rather easily.

A profound (and controversial) criticism of the thermal convection model
has been put forward by Higgins and Kennedy (1971, 1973). They propose that the
core is, for the most part, stably stratified (their second paper says that a
convecting region may exist within 500 km of the inner (solid) core). Their
argument is that the adiabatic gradient is shallower than the melting point
gradient. Assuming that the mantle/core and core/inner core boundaries are melt-
ing-point transitions, they arqgue that the temperature profile must follow the
melting point curve: greater temperatures would lead to melting of some of the

solid core, lower temperature would tend to solidify some of the liquid core.

To compute the adiabatic gradient we have (7F7=—-)95 %;for L = radius of core;

¢ oL 0T\ _ =T (dT) _ _ =lgr
—T_E"CLT‘_‘?' d‘p, S0 3P>a_d~fcp a-ﬂat'a:)a—d— Trﬁz_—'

The melting-point gradient was obtained by extrapolation of shock-tube data for

melting temperature vs pressure.

For convection, the temperature profile must increase (with depth) faster

than the adiabatic increase,

ST _(ﬁl) - =gTr
ar nd Cp L

ar

[

"

oy -

_ prom—ry

¥ tosmmomain ¥




Fln I 520 4000 z

-~
-

sur*ace

I/l’ melf, ng Pg'mT Sra d:enf

2,000
«—Lcore/manTle bou ndary
lologray . §
E adiabate
3)‘:1, dl'erff
‘/:,cure/mnef Core boundanj
6000+
Fiilg,.2
Withex |, T, Cp as in Table 1 (Lecture l),3 %} = 5'"/5eck, we get

oT = =/
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Assuming all heat sources are in the core (quite unlikely), and that the radial
gradient at the core/mantle boundary is given by the last figure, we get a surface
heat flux of approximately 6 x 1074 cal/m?s. If we assume the Kennedy-Higgins
melting-point curve, we obtain 4 x IO_u cal/mzs. Both values are considerably

below the observed flux of 1.5 x 1072 cal/m?s.

Another basic criticism of a thermal model of convection has been given

by Braginskii (1964), which lead him to his proposal of a geochemical mechanism.

Treating the thermal dynamo as a heat engine with optimal eff|c1ency‘ﬁr';%%%- J—)

actual efficiency perhaps , the work done in sustaining the field (most of

/00

which appears as Joule heating) is about of the net core heating (presumably

i
00
by radioactive decay). Assuming 1/5 of the 10!° joule/sec heat flux at the sur-

face is created in the core, Joule heating should amount to 2 x 1010 joules/sec.

Suggested values for Joule heating have ranged from 4 x 109 to 4 x 10'2 joules/sec;

Braginskii favored the latter, higher figure, based on a kinematic dynamo model
of his.

Both of the above objections (popularly known as ''core paradoxes'') are
themselves subject to criticism; in what follows, we treat convection explicitly

as thermal.

Our equations now become (in a rotatlng frame)
» = -,

d—‘-"rl/’ﬁ. atpfl Fepll, (8.7) +‘7PrB ToQ-T o (oF, (6.1)
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where F includes all gravitational forces and Ti ) is the viscous stress tensor;
iﬂ
)QCP -it—t_T =T A% 3‘+0$ourctovu<+ Joule 3 (6.2)

) [0 ~ au-,, ' > -
where o¢ = = ?(?%’)P’ visc™ ”‘J al_l Ojoulc * ’G_-j-) amd 3‘— AVT,
the thermal diffusivity.

We assume U = 0 on S, the boundary of the sphere which is our domain,
— —_ = 12
and that T = Tg is constant on S. Setting F:‘V‘Vamdlihré J_ﬂ. AL I

taking the dot product with the momentum equation gives

52 (L e 0)e V- (pE (F 8+ 5 -
—_-pV-a (B I)—u V’T-/)u (..Q_ r)+)n_£/- (6.3)
Integrating over the core, e
a?t( +E) =W+ W, - —fﬁ--(&ﬂmn , (6.4)
where Ei, Ep are kinetic and potential energy given by /szu.AVa‘ [ Qldvo)

respectively, the compressional work W, —jPV Wdwland the precessional

WP =jp(%l£~ i (ﬁ,\?))d vol.

Recall, from the kinematic dynamo problem,

= ga(/'i 3")4\”1 o = (6.5)

(and tidal) work

where E. is the magnetic energy. Putting this together with the previous
equation gives
—a—-(E +EAE)- Wt W,-2 -2 (6.6)
b‘t L k P & < P vise Joule

Introduce entropy, s and internal energy density e, we rewrite the tem-

perature equation as

D i 3
pTdiepBent B A (poenipeiepn2
=V‘3‘* Q‘OO’:;"'Q&HJ: + QJ’-u\c (6°7)
Again we integrate, and get
3| pedvol Wit ds+2
"3?13}_' peavelz~ve }3" n e uvru+a'v-u &'rovlt (6.8)
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so if €E= Em+En+r Ept Eys
9E nd 6.
Jt ‘—WP"’ aswvce"‘L F.nds. s

Denote time average by an overbar, and assume the system is near equilibrium.
Then

\A/t‘. +W = 9~v/|sc-" ﬂ-’eule

L R (6.10)
q:nd, —L;-ﬁ.ds =Wp+a

Jource

We can consequently sketch the system as a heat engine driving a kinematic

dynamo.
surface
flux
We
(sraine)——%
7
<
&IW'G &V;IC
a Souvce ’ VVP
Fig.3

0f course, there is but a single earth, and so the two must be superim-

posed, as they consist of the same fluid particles.

We want to show that & . + 2., is bounded in terms of A ... -
The idea is that parcels V‘ of fluid deep in the core absorb heat 9., at tem-

perature T;, and give it up at the surface at temperature Tg; entropy increases,

A ﬂ-ﬁ . H v . .2.—"_ (a51'1 + 2 ¢ 9~5+Q¢0""&)'
melialE o s nl S e SRR s L

X T
SO :zﬂmrcg t awu = &Jou; < —.';_"L 15 and g‘v;u*’ &1“.._ = ( -;':" . l) 2" This
3

still involves the unknown Tp.., however., For further discussion, see Malkus
(1973), Hewitt et al (1975), and Backus (1975).

THE BOUSSINESQ APPROXIMATION

-
We assume at the start that SL = constant.
We then treat the density P as a constant @ , EXCEPT in the body force

= 2
term pF =z -p VS -0 U‘—“jT)’E , where L = radius of earth and o(=‘;1'('5‘$‘ P',

he effect of density fluctuations on the gravitational potential is also ignored.

We also neglect, in the temperature equation, the terms &v.,‘ 1,“,‘and

Dp
o(T;E' The equations (6.1) - (6.2) then become

-
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PG d:*--zfaﬂna*’v’ﬁ-a,\f«rV':{ (6 I')
=po o T9 737
V.i =0,
and AT .
Llp BT AV T 0, (6.2")

These assumptions require that the thickness of the convecting region, L,

C
be much less than the ''temperature scale height'', L = # . for the earth, one

obtains L = 2 x 106m‘ Lt =2 % IO7m, so this is not too bad. This condition
arises from the supposition that buoyancy and magnetic (Lorentz) terms are com-

parable, the @ much smaller.

Joule

1 A remark: in the Boussinesq approximation, if all time-averaged quantities

F are independent of initial conditions, then the mean total helicity must vanish.
= = ia i -

. One sets) the initial conditions alternately to (u.,,p/,'ll, B,)= (&, (+), P (F),

7;(\-'), Bo(?)), for some given functions W,, Po » 1, and Bo» and to (&,‘,_,PL,T“

=) -~ s e

Ba.) =((:°("7'),Fo (r), To = 7"'), Bo ("‘" )0

Then H,= (& (n&,) dvol =-[a,- (U &) dvel = ~Hy;

since we assumed H} = Hp, we conclude that they must be zero.

We now consider a bound on magnetic energy in the Boussinesq limit. One
can show (see the appendix) that -‘Z—Lv,,,C + E,“u <
a L v
3/\@7,(4N, & \um/} G
ST + r)(r r
o \3n cyw aoad o()G( Yridr (6.11)

where/3 :ﬁ & 1 and Q(ﬂ:(é,)r. <(+)), denoting the mean over a spherical shell

of radius r, and Qs = QsourCe' The first term vanishes if Qg is constant, so

2\'1:( * 270\1&: 5 Lfﬂﬁl' &sourcc'

W ;z i L > 1
e now use (cf. Lecture 2) . e = eeeir B dvel and SethdV”-‘B‘,—va/,
@0t g B, L*

define the Rayleigh number as Rq = 2 Cpv K* ° the Hartman number as M’/“'zf’ov

. o " Q - —
in which case one obtains — 250 = 50,

(Our standard values (Lecture #1) give R&//’,(zé 190 for fields of 100 G.)

Thus in the Boussinesq case., the field must be bounded (''most of the small-scale
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stuff is wiped out, so only about 1/10 of the o¢ -effect remains'). This bound

was obtained (using a somewhat different argument) by Hewitt et al. (1975).

Notes submitted by
David C.W.Hart
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Appendix (Stephen Childress)

To obtain (6.11), first multiply (6.2') by T-T¢, integrate over V and

average over time. After use of Gauss' theorem and the constancy of T we

A ((AT)"dvol = g @, (T- T,)dvol
v

obtain

v

and therefore

. *
T5 a)'o.un-ce = 1(\;5 'JVOI.
v

We will use this relation presently. Now define
<G> = Qlr),
where ] ! / d
L )»(r) = Hﬁ“;:{ (') areaq
b 6

is the spherical mean at radius r . The spherical mean of (6.2') gives, after

integrating once with respect to v, ¥ J' )
ey e BT i = XOPA .
g Cor* i Ty~ Ar* g > = ) PROWP)dp
But in the present case L

gt ,
Vé:ﬂﬂ~{“3€:°<u{T)dr=Q + &

o,
Jouvle Vistous
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and so, now using (*),
FL TR /
qn} e (T o de = GULCT -3 | Tdvol
4y llT, - e R, Tdvel
(R) may

S 37T
S YT LT — (Q—,\—_“ : Q.,,wu
™Ma

where the maximum is over space and time.

Combining these results, we have (recall/3 =L"/L, = Laj/c“’)

o 31{37‘; {_1‘]7 LB_ Qsowu_ ]
¥ =

= |
Vistoas EPTILS i 4 CQb)ma.v

L
*.ifgﬁjrf/’Q(ﬁJ dp

20

which is (6.11).

Lecture #7 ROTATING MAGNETO CONVECTION

Now we consider the effect of putting in heat to support a magnetic
field and a convective velocity field. There are two aspects of the complete
dynamical problem that we will consider. 1) The kinematic problem of genera-
ting a magnetic field from the free convective motion of the fluid and 2) the

effect of an imposed uniform magnetic field on the fluid motion.

First we examine the Bénard convection problem, i.e. a rotating layer of
fluid heated from below, in a uniform gravitational field, (c.f. S.Chandrasekhar
""Hydrodynamic and Hydromagnetic Stability' Chap.3). Our interest from the point
of view of dynamo theory is the structure of the realized modes of convection.
We make the Boussinesq assumption that density changes are important only in the
buoyancy term and inertial effects are negligible. Also we linearize the equa-

tions of motion which eliminates the advective nonlinearity of the substantial

—
derivative. Tn-

T

A ¢

= T :
T l JLL A denotes unit vector
L
(] TT°+AT (AT =8y

In the temperature we subtract out the initially imposed linear gradient:

T=T,+AT-2AT+6




The momen tum equation is:
]

o =
cju*Zﬁ.A U+t P-\)‘,"Zu.goc 67 V1) =0

ot
and temperature equation:

29 v AT _kvte-0
ot W

We apply ''slippery'' boundary conditions: & = Vv = —D—-;-éag‘-oat 2 =0 1 for
isothermal bounding surfaces.
Keller: In elasticity theory these boundary conditions are termed a

'""greased surface''.
Malkus: This is achieved experimentally at Ry~ 640 with silicone oil
bounded by mercury below and helium above both of which are good

conductors.

We will obtain asymptotic results which in any case are relatively insensitive

to choice of boundary conditions.
A A
To put the equations in more tractable form apply 2 -V X and - Vx{Ux to
the momentum equation and let f :ﬁ/uU)% , the vertical component of vorticity,
obtaining (extemporaneously)

° Jdw = ”\ sl = éﬂ
5 in o ver o[l ATn - 3

_ ot QQL VV £ JZé_z.— 1% Vz'e
Ve WV W -l e g
Spiegel: '"That deserves a round of applause . . . even the signs are right''.
Childress: '"ls that right?"

Spiegel: '"How should | know?"!

g may be eliminated between the two equations, multiplying the first by

2_,(13—3;, the second bY(Tat— -9 ) and adding. This result and temperature equa-

tion are nondimensionalized with the following scales:

3
LPATyex
length ~ L Rayleigh number Ra= "77\3'
>
time ~ — (typical vertical diffusion time)
ki yn-t
Taylor number Ta = SE (measures effects of rotation relative to

viscosity)

(

Also note TaZ A*(U.K))z <2 (E = Ekman number), and

>

finally c&i =9’ 2z > - Note the Taylor number for the Earth using
L-3x10 Q=7.4x105 V-106MKs) is ~ 1.8 x 1030}




in final form:

Vv W To 2K R (52 -77)

ot
) z i
(Prg't—-'v )6 =wW
for which there is a class of solutions with
. = 2 ot S £x
w =sin(nif2)cos (K«X)e” n=12,..-(k,Xin plane L 2)

where the wave vector (kx, ky, n) satisfies the relation
3
R = K’*‘T\‘nz) fﬂ’nl Ta‘
a = . LS Ly

)" for neutral stability

Proctor: This is for Pr =1 1
Childress: Assume Fr2.6-."7. This insures exchange of stability at

large Ta.

We are concerned with the onset of instability for o= crossing through zero, in

the limit Ta —> oo. Qualitatively the relation above may be sketched as

Clearly (Ra)yi, is achieved for n = 1, but for what value of k? (as Ty —> co).
~“'T

If we assume that k ~1, then Ra ~ Ts. But if k >> 1, then Ry ki + L —& .

RZ
d—dRK"r-O for a minimum yields o 5%
. /e ~ 3
M:(—E‘ ra) = Ra=3(% T“)

(which is smaller than the estimate from the k ~ 1 analysis. From the point of

Taking

view of dynamo theory this is nice, for a fast enough spin the convection modes

have bery large horizontal wave number, i.e. small spatial extent 4? . Thus
( 2 )Vc ’
Az 5 S
: N( T 44 | as T, —> oo

The appearance of this new scale in the problem may be thought of as aris-
ing from strong Coriolis forces which cause a large orthogonal deflection in the
trajectory of a particle initially moving horizontally, leading to thin vertical

convection cells.

Malkus: Veronis found as T, — oo and k. gets larger the actual particle
trajectory in a roll is the same as for T;~~1, just tilted. The balance is feo-

strophic.

Stern: Think of a top, the rotation stabilizes the motion even though it

ey
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is top-heavy. The only thing that makes it fall is friction as in this case,

small cells are formed in which frictional forces offset centrifugal forces.

Malkus: Yes, but the viscosity destabilizes the flow.

Spiegel: The point is, why is k. large? Viscosity kills large wave
numbers.
Malkus: Suppose you increase the heat flux, what happens to A T.? How

does it depend on Y ? O T. goes to infinity as viscosity goes

to zero! The kh is a viscous term.

Spiegel: The inviscid problem has a critical wave number such that all
smaller wave numbers are stable and which tends to infinity for
infinite rotation rate.

Eie S

ance of buoyancy in the numerator with vertical forcing in the

Childress: Perhaps the term to focus on is where we see a bal-

denominator, i.e. not a geostrophic balance to lowest order.

Now we consider the velocity field of a roll.

clf33
1 @(}Q i
L g MYMT
2
- < a :%\ff A = . > 2 Tf;:‘, o SR
Uy = sin(fiz) cos (KoK )2+ = (3+ k) cos (w2)sin (K, %) - o cos(maysin[iKgx)
(A

[
Note that the first two components, vertical and perpendicular to the plane of
the page, are 0(1) quantities while the last component which makes uy divergence
free is 0(Ta"/6). We expect from examples already studied that the ig— phase
lag between the first two components should lead to regeneration. The pressure

of a small scale £ justified first order smoqﬁhing and we find the dyad
-yg)
~ vz

Proctor: This is for fixed YL .

o = = == $in (27%) _R‘R‘aL'V 6 (Ta
¢

We can add any number of rolls with the same k. but at different angles,

e.g. a hexagonal or square arrangement leading to a matrix of the form:

oty ok 2 0

®za O

138
n
Q
=

0 0 (o)

-




with a positive definite upper block. A mean current in the plane suggests an

oc? dynamo is possible in principle, having a periodic repeated cell structure.
Although the net helicityj(tiVx lj)d(Vol) is zero, there is a ''polarization of

helicity by rotation'" with respect to the midplane:
Es‘

0‘+;H"’

u‘,H"l‘ -

We can produce a dynamo with large scale magnetic field by slow (horizontal)

modulation of o¢.
Stern: Are there modes which aren't dynamos?

Childress: The only case which would not be a dynamo would be a degen-

erate matrix, e.g. one roll alone ( o< diagonal with one nonvanishing element).
—
Pedlosky: Why isn't this realistic, that is, does B have to develop?

Childress: This is a highly degenerate plane problem, in a sphere one
can't arbitrarily combine rolls, for example you might have an o¢ -effect, but
no ™,

Proctor: According to Soward with two or three rolls you can have a field

with Ry smaller than the critical value, here.

Childress: Actually the problem is even worse as there is golbal subcriti-

cal instability as opposed to just local.

Proctor: A smaller value of Ra. for two rolls with a field suggests the

only possible mode is a dynamo.

Malkus: Roberts following Chandrasekhar suggests that ''gyroscopic con-
straints are stabilizing" which is widely accepted. It is interesting here that

the two constraints oppose each other, relaxing the conditions for instabiliry.

Now we add a uniform imposed magnetic field following Eltayeb and Roberts,

and examine the asymptotic dependence of Ra. and k. on T,.

%t R %1

! Qe
«) i
L
Vét-——\' % e
K, % yz .
= + -
ho % Y u .
~B (Tt M
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t/2 in the intermediate mag-

The minimum RaC in both cases is for M2 ~— Uiz
netic field region where magnetic and rotational constraints come closest to can-
celling. In the weak field regime, not surprisingly, rotation dominates and the
exponents are those found earlier, while for strong fields, horizontal and verti-

cal (cf. J.Pedlosky on "lInviscid Stabilization'), results differ markedly.
Spiegel: There is a dip for the vertical field?
Childress: Remember, the vertical field responds to both horizontal mo-

ions.
tions 2

Note that the ratio is independent of viscosity and putting in the

/2
Ta

numbers for the earth, the ratio is —~ 16.

1
Proctor: Rd~'0(7;/1) puts one out in the high field regime where the in-

stability is a diffusive one.

Knobloch: For no field, Ry - Taz/3, and with a strong (horizontal) field
fy = 1,112 3

Childress: Yes, and notice that the change in exponent of Ta‘/6 now means
£~ LA’JK for the earth which would invalidate the mean field equation and
X -effect.

Malkus: In a spherical geometry, though, the constraints might lead to an

optimal k such that £~ 7%-Radius.

For a sphere the problem is complicated considerably. Busse and Roberts used
linear stability theory to obtain asymptotic results for T,—> o0 . The convec- ;
tive mode for a spherically symmetric gravitational field consists of slender

rolls oriented along the rotation axis which propagate eastward, this being one

of the consequences of a loss of a geostrophic balance.

There is an expanded radial structure and a rapid azimuthal variation;
thus one neglects r derivatives relative to ¢ derivatives obtaining an equa-

tion in ¥ and z which reduces to an eigenvalue problem in z with the assumption
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of a mode eimqh The loss of radial dependence leads to an infinitely degener-
ate class of modes. Soward did a multiple scale analysis supposing Ra‘;'RaC and
found a radial dependence of o~ and thus of the wave apeed. If one does an in-

itial value problem, eventually viscosity kills the mode.

/.:,

s
&

Spiegel: Perhaps the time involved is too great in the context of other

Y,

approximations.

Soward employed nonlinear stability theory and was able to resolve the
structure on a long time scale for
= !
S Poe @, 1)
; -2
There is a complicated radial structure on slow space (T, **) and long time scale
resulting in a Stewart-Robertson type evolution equation. Heat is transferred

radially by a soliton-like structure (rather than the laminar flow of a conven-
- : -
tional cell) of dimension T, i
)
pect T, 4"’VI, thus his observation of convection cells propagating eastward is

In Busse's experimental apparatus one would ex-
not in conflict with Soward's asymptotic results. (Also, the gravitational
field is cylindrical not radial.)

Eltayeb and Kumar considered the effect of a magnetic field
= .x“- ‘»'/Ll\
B=8 (__{ﬂ,)_ P

in a sphere, obtaining the following results:

S
=

L A

For M n'Ta‘/6- Ta'/u the drift direction switches so that very strong fields
(M2 7'>Ta'/2) (with essentially no dissipation) are associated with westward

drift. From numerical results the velocity is found to be

kS ‘: 1
Lw,= 13.33 4,4"* —%wio -;M:z_m/sec
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which with M2/T,1/2

~ 16 for the earth is comparable to the observed westward
drift. (This is the phase velocity, the group velocity is always westward even

for small B. Also these results are for R ~X ~ V)-

For a dynamc one would like to find a simple problem which contains the
essential physics without having to consider a sphere. Soward explored the weak
field limit of a Benard dynamo, and found a local regime of stable dynamo opera-
tion. His results coupled with those of Etayeb & Roberts and Eitayeb & Kumar sug-

gest the following sketch for general rotating bodies with convective dynamos.

Strong (_— subcritical bifurcation
Zmag
«— Supercritical bifurcatien
Weak
‘;g %]
G
Ry~ T5 J

A B&nzrd dynamo in the strong field regime is rendered extracrdinarily compli-
cated by these aspects of magnetoconvectior.. Thus one might consider, rather
tharn the full sphericai modei, either a planar limit or, as Busse has done, an
annular mcd2i with top and bottom surfaces inciined at a small angle to allow

Rossby-1like waves.

Malkus: Also one might examinz a cylinder with spherica! caps.

Any medel of an =™ dynamo is subject to the criticism thar cne wouid expect
an o« w dynamo due to large scale motion in the strong field regime since con-
vection will distort the initial radial symmetry of the temperature field lead- ;
ing to a ''thermal wind'' to provide large scale aximuthal motion. In any case
either approximate models or approximate analysis through a truncated modal ex-
pansion seems crucial to obtaining a tractable problem. In the next lecture

we shall examine the case of a weak field planar Benard dynamo, where some of
these ideas can be examined in what is probably their simplest setting.
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Lecture #8 THE BENARD DYNAMO

In this lecture we consider a successful hydrodynamical dynamo, studied
by Soward (1974) in the weak field regime. Physically we have in mind a rota-
ting Bénard dynamo in the 7&'*”? <3 limit. This implies, as we have seen, a
small scale convective motion (from linear stability considerations). We will
put in a small field and see if it is amplified. As the structure has local
helicity we anticipate it will excite magnetic fields. Finally we use a modi-
fied finite amplitude theory which incorporates first order magnetoconvective

back reaction on the velocity field, and enables us to investigate dynamical
equilibration. By weak field we mean /YN = ‘715?3;‘
Malkus: How is it that equipartition doesn't enter into the problem?

Childress: This requires M~ O(Ta]/é) in which range there may be more
than one stable state. l

Pedlosky: M ~0(1) means all the terms in the dynamic equation are com-
parable and in particular the buoyancy roughly balances the r
magnetic energy.
R R,
th
an equilibrium convective heat flux (essentially total kinetic energy) equal to

-
We fix C7(1; 6) in which case the convection process rapidly achieves 1

that realized without a field, while the dynamo process changes on a very much
longer time scale. Effectively this decouples the energy of the convective flow ]

from the magnetic energy (cf. discussion on this point re: validity of first
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order smoothing). The magnetic field in the weak field limit merely redistrib-

utes the energy among the available modes; thus the question of mode degeneracy |
is important. In the Bénard problem all rolls of fixes Ikcl are equivalent and '
direction is then a continuous parameter at our disposal.

Malkus: These are assertions not duductions, one wishes to establish that
this is what emerges. '

For our choice of R, there is a band of allowed IK! of width ,b’Ta-l/IZ but for

convenience we shall restrict ourselves to a band of O(Ta"/é) about ikci, to
1

avoid multiple scale analysis in the horizontal.

Malkus: Is this essential? Why are you being so restrictive considering
supercritical equilibration when in fact a subcritical distur-
bance may be important? |t seems a kinematic approach, essen-
tially you are saying a square lattice of rolls works.

Childress: No, you do not know that one mode isn't selected dynamically.
Malkus: There is even a convection experiment with triangles! With an
appropriate bottom surface you could probably even get a convec-

tion pattern in the form of the GFD dragon !

Pedlosky: You impose no planform restrictions other than no variation on
small scales.

Spiegel: You can always put walls in the problem and select a single k.
\ : 1/
Scales: M~ o(1), R, ~ o(Ta/‘) Rac“’ LT, 3)
Let ug = velocity scale,
-1,
expansion parameter = € = T» -

= u, Lt
Recall, o = 1. 5 O(“'—"‘) so then, balancing large scale diffusion

s )
against the VX(“B)term in the mean field equation, we have

‘YLBo = B, F— 2 __7,__ "/1_____0 - Y
e ~ L > Wo = H & (1; )

2
For the unit of time we choose the magnetic diffusion time: L—/ﬁi 8

Finally write the temperature as

T:T, +(-F/L)DT+EATS

Keller: It is interesting that uy is determined independently of the mag-
netic field even though it is the back reaction of the field that
should limit the velocity.

Childress: That's basically due to the linearity of the kinematic dynamo
problem.
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Pedlosky: It seems that your choice of ——h——°~ imposes a develop-
a

¢
ment time for an unstable mode. A dissipative time for scales
of Ta_‘/6 leads to a Landau-type evolution equation. The other
time unit, Lz/'L , is much longer so that there is a rapid hydro-
dynamic equilibration which fixes in quasi-static equilibration
and then one can imagine turning down the magnetic diffusivity
to produce a slow drift.

This approach presumes that one can solve the stability problem

Stern:
for a finite amplitude velocity field without a magnetic field.

>
We have for example Busse's O(E )expansion around the band or
Pedlosky's technique.

e A
We set Ra: £ ‘RQ so that R ~ 0 (1) (since R T 3 ) and we pre-
sume all diffusivities are about equal i.e. Y~K ~ n (although for the Earth

Malkus:

-5 . . .
K ~~ |0  for which singular perturbation there is a ''sharp'' temperature field

which does not diffuse while momentum and magnetic fields do).

Strong differences in diffusivity hence a lag between fields in-
troduces fluctuations in finite amplitude states which are other-

wise stable.

Pedlosky:

~ ~

Introduce horizontal scaling: -x—:'i XL = (and by extension v;, ) and
E > E

we have 3
= w
Continuity: Vh et E 52 * o

Temperature: E/l 39 (3'6h)9+ Ew ie—-... g“"_& 6:6" 8”‘ K, a"9__W =0
1 OF TR
5 -
. CI &B o ‘a B /"' A <A =
Magnetic Fieid: EaT'thB ET" bbx( 53- (ZX(LU( B))

5M Yasy o2\ /> aa A A -

Momentum: i—[ +& (Q.Vh)u.+5 wg;]-»&aa—;-r h?+zx w
S A S VY N 35 ArL % =
cEMBx (G B)oEMBx(2r53)- €7 0-g° 8. = K Roge'z

where in the last equation we further define & =®(2 A +E" Q(X\J 2t t)
mean temperature

E’/l‘;@ 61394’& (u \7,,)94- E,W{ EV‘EB_] Av,,e E".B [8@ 57'-66 W ED

Notice in the momentum equation that the Coriolis force is a dominant term.

Finally we introduce expansions in the other fields:

- A N

UzWw, +wg where

-ﬁ

Ar——




P ——— =

Ve o (1)
'-‘(0)* E/ZU-h

Uy = 4y, + ..
W= W ERWO ..
and B . BY@,D+ E4“BY (LT 2t)s. ..
(@
P=P ¢~
B« BT

1
where fluctuations first enter at order & v (eventually but produce other ef-

fects, e.g. a mean flow in the velocity field, through nonlinear coupling).
Pedlosky: What about a boundary layer on the horizontal surface?

Childress: The boundary conditions are stress free, isothermal, so there
is no boundary layer. But even if you inserted one with no
slip conditions it doesn't affect results, to the order we
shall work, in the high T, limit.

...\ (°)

Zeroth order Vh =z 0 Continuity
) A (0?2
%, F(D‘r 2x =20 Momen tum

: . . - =0y 2 ARE 02 . :
which is readily solved with W, = 2xV, p = ~VX(2P ) (divlcurl) =0 in
continuity equation)

B [0}

Note that P ~ O(!) so the velocity field is a baroclinic geostrophic bal-

ance of pressure field and Coriolis forces.

w

K = ¢4
(& ") we find the same set of equations for U-;, and P so that

a suitable choice of normalization allows us to set A(') P
(2) ~
O(E): VP + %xfl,, = V"u.;.f"
dw
0=

Oliver: Where is the fluctuating temperature field?

Childress: That enters only in the vertical component of the equations.

— (2 _

The first equatuon is solved by u.,‘ 567_‘PC°)+ é\x §P (™7 then the

= aw <
second equation yields < TR ~ "=z - The & component at order £ yields
27 | k3 = R R,

> Ra(,") 6% T2 Ww”where R, RE‘)+ & Ky

Pedlosky: Taking the curl of the El,,‘“ equation we see that the diffusion
of the vertical component of vorticity is balanced by fortex
tube stretching, the pressure gradient is in geostrophic equili-
brium, it is not just hydrostatic; as in Stewartson's work,




- 62 -

. l . . . - .
involving an & /3 expansion with buoyancy, internal stretching is much greater

than Ekman boundary layer stretching.

o o) o) b
The O(E,u) temperature equation is -;Z‘S- o 9(+W‘=0- Applying ¥V t0

2 4 . s e .
this, VYV  to the (7(5)3 component of the momentum equation, and eliminating

(ol )
Vpyields

~b ™ (o) & b)
[Z-B"T ai,)w("=o

- I
Q) Lk X e ~ (o) o~
let W' = R W(e hSln(lIZ) then R, = dib]
k| =k

which recovers

the asymptotic result from the last lecture. Closure at any order, N , requires

the M+ 2 order equation.

A
Also the heat flux is known from E:luﬂz by the adjointness (or solubility)

~

condition applied to R, I this wesk Field model (M~ 0(1) the B field en-
ters only in the O(€) momentum equations and thus does not affect the heat flux.
A different scaling appropriate to the intermediate field regime would bring in

B at second order (albeit for this model it seems to be no stable solutions in
such a range) while in the strong field regime magnetoconvection would greatly
modify the heat flux and B would be present in lowest order and it would be in-

appropriate to expand about the zero field Bénard problem.
Stern: When does the linear stability problem for B enter?
Childress: The 0(53) equations give the modal amplitudes.
Pedlosky: Note the field corrections are of order (amplitude)z.

24
If we consider terms of O(E )in the temperature equation and average over

the horizontal we obtain
%

1) P Gty | K 2®
f e e 2

where the second term represents the convective heat flux, that is, there is a

-=0

-3

balance of kinetic energy and the mean field. This is how via the o< -effect
large scale motions are driven in a sphere. Convective motion leads to a new

temperature profile which stabilizes quickly.

‘ ~ mean temperature with convective heat flux
: e

1-
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We will write the mean field equation with this convective mode for small scale
motion in the horizontal (compared with a length scale of © (i) in the vertical).
Smoothing is done by horizontal averaging in both the mean field and induction
equations. Recall our expansion for the magnetic field

=3 o =5

B- E;“{+ EBY% s

)(o\ 3

where we write the mean field B as <B)= (B (2,t),B, (&f),c i.e. no horizon-
tal mean on the fluctuating part of the field. From O (E;Vi) terms in the mag-
netic field equation we have 2o
§BV-B@.§0¢
which expresses the interaction of the small scale velocity field with the mean

magnetic field. Then, taking terms of O (£ *)one obtains

-

2B° 9B® o (2% @“x B)]=0

which becomes

i av—-‘(o) _\(C) -1 o) & —*(0)],.
28 8. Z [#an [T ¢h)ge)-o

Averaging in the horizontal (indicated above by brackets) yields, ultimately,

3B; 3B
Ly 217\-;—-(5\71(1‘13)")” BY=0
EYRRES
where
[ = otaa kit o IR
mLJ- = ) OC:J' = Z R e k,t)
ot M ot 12 R
-
and € is essentially the energy in the mode R . We can normalize by re-
quiring e¢, + o . =2, (For the isotropic case Az k= ) Note the factor

of S)Y\<2Wi)which corresponds to the polarization of helicity by rotation.
Specifying some initial distribution of amplitudes one finds there is a certain
minimum value of A required for a solution, which corresponds to a critical

kinematic energy for the convective field.

The self-consistency for the problem enters in third order by an evolution
equation for the amplitudes, given the magnetic field. Thus one can imagine iter-
-
ating the problem numerically be giving e(k c) finding B“’(i,dt) which de-

termines € (K ot). + The evolution equation is of the form
dﬂﬁ—*-‘ [r‘(t)-%x‘k Koty B; (1t)e (Ko t)e (R 1)

with the requirement that since the kinetic energy (heat flux) is fixed, ( ) on

both sides is identically zero. To simplify the problem one can imagine a system

with discrete wave vectors and certain selection rules.

Keller: |If the initial value (amplitude) of a mode is zero, it stays zero.
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Stern: But only at first order, there are certainly mode-mode inter-

actions in higher order.

Pedlosky: The total energy is determined hydrodynamically, so the rolls
could arrange themselves to make B = 0 couldn't they?

Childress: It doesn't happen, apparently, if two or more rolls are
excited.

Pedlosky: Shouldn't the system try to break constraints?
Childress: Yes, but it never quite makes it.
Keller: It's like the oscillatory case with no dissipation.

Motivated by the spirit of the kinematic problem we will set

/| © o -l
ol = y ™M =
o | l o/-

Pedlosky: In considering all rolls with all possibie distributions, how
do you choose ¢ 7
. : = Wi i ;
Childress: There is only one scalar,=,; to within a rotation of coordi-
nates. We now look for steady solutions.

The field equations are

27 A2 (sin (mz)(-sl))-axﬂ' 0

»n

FES o=*
. 2”B.. .
2ﬂ),a—ag-($)n(zﬂ2) B,) - az,’_‘—O

a .
with boundary conditions B; =0 2z0, I, i.e. perfectly conducting walls,

oz

carrying no tangential current. , To eliminate uniform fields we require
JB; =0
7 &
If we define B+(§ =@ the equations become
. ) { '
anai (P sin(amr) - =0

integrating once gb(zﬁ?u'sm [2ﬁ2)-¢‘=0 thus

o

¢= e-:’?\cos (277 %)

aid - A cos(lﬂz)d

(e

o
with a minimum of

=Jo(A) =20 is the associated eigenvalue problem
)(‘_ = 2.40ok.

Soward considered nonstationary fields and found a smaller zl<,.

L—-hl-v—-y—-——lhp—-c

[e—
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For a more general mode distribution the steady result is

‘fzc"’ 2.4y04 where z{t(detoc)l/"

Proctor: Don't bounding techniques for the unsteady case give a (an

absolute lower limit) value of 77/2_3

Childress: The smallest exhibited is A % 1.

Keller: It doesn't seem you should beat the steady result with bounding
. . . x . -
techniques which are insensitive to unsteady U-

|f one considers a wave-like field of the form
. ) ~
B = elut;A; cos(QW“”) N2

. . . J Wy
with o imposed the result is /1‘ = 1.597 and T -1.394.

Alternatively we can compute the o matrix for a single, slowly rota-
ting, roll (rotational frequency ) with the result that chcf= 1.08 and
e = .8

Spiegel: A rotating roll is not an exact solution of the convection

problem.

Pedlosky: But the rotational rate is on a very long time scale (com-
pared to hydrodynamic equilibration time).

Keller: This approach gives rise to an ordinary differential equation
with periodic coefficients soluble with Floquet theory.

Now we turn on feedback and look at the results of some numerical experiments.

1) For two orthogonal modes there is a limit cycle behavior for energy distri-

1 bution in the field and rolls c
m
kinetic energy kinetic energy
all in roll #2 all in roll #1
2) With three rolls oriented at 120° intervals the distribution of kinetic
energy in the modes is something like the following

n
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which can be thought of as the system mimicking one roll rotating.

3) Following Soward one considers a continuous angular distribution of energy.
8(6)059 < 217 (corresponding to N->0e0) for a class of motion with e(e)cor-
responding to a fixed structure rigidly rotating at fixed angular velocity, i.e.
the distribution has the form €(@-wt). The following results are obtained:

continuous branch of
rotating solutions

mag T\-‘ energy concentrating in one roll i.e.

e — J(6.~wt)

results from 2 and 3 roll calculations above

{

subcritical (3
disturbance i ©

The dynamical picture for the weak field limit is as sketched below:

-
L
Side view T h%:§ ;
: uniform
T, ¥ 87
-
, B
Top view i T

=y
_ —%

roll axes

Malkus: This orientation of roll axes is the same as in the case of a
weak shear field, for a strong field the roll axes line up with

the field.
This suggests a physical mechanism to explain the rotating solutions.
Roughly, roll axes stay orthogonal to some representative vertical average of
the magnetic field. By the o<-effect, mean current is generated perpendicular

to roll axes, which acts to feed the orthogonal component of the field. This

changes the actually direction of the field, and so rotation occurs. When one

considers the polarization of helicity, the boundary conditions on the field, and

the signs of the o< -effect, one gets the following sketch ( B; is taken a pro-

portional to ¢Osi?):

el VEORRY, mciomes WO .y WOV v ‘r~v\_ml=unu“

L
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<o : * westward rotation induced

"induced field
The rotation of rolls to the ''west'' is observed in the numerical solutions.

Keller: How about a different means for limiting B besides back
reaction? It seems [3 has to be too large to limit the
motion.

Proctor: No, it is otherwise a kinematical problem.
Malkus: Yes, there are certainly other mechanisms though.

Spiegel: Yes, saturation for example where A :r[(Bz)-

Notes submitted by
Glenn R. lerley
and Hisashi Hukauda
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Lecture #9 COMMENTS ON THE SMOOTHING METHOD

Yesterday afternoon Joe Keller presented a general method of applying
smoothing methods to ''rough'' problems. |t might be useful to consider what

the smoothing method applied to the dynamo problem is giving in its entirety.

In Keller's formalism the operator which gives the total field from the

r - -1 ) . L

mean field is [ L+ (M 1= p) \/)] , and in Lecture #3 we called |t['_[~$] I‘
Each operator is a differential operator. |f we invert and substitute into

the Mean Field Equation the result is

2 ) f = vx[sh 5 S

2
where f is the smoothed field. The magnitude of the ST term is
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R
[ - -—~ + 0o ] where the first term represents the o< -effect
(_ui-*l)L-
2
and the second term is ﬁ . If we assume that £ W is smaller than or comparable
. . A ' £ L™ 1
to 7 and balance the diffusion with the o< -effect we find that ——';F— e

ar, if R= %’i then, /é‘ R*~1.R ~ /€.

The 7 -effect is then always smaller than the ol-effect by a factor of
'C/L_ . (This need not be true if cvo is ordered differently, however), even if
the o< term were vanishingly small and we attempted to balance diffusion with

the ﬂ term we discover that the ratio of the two terms is
£ vt [y
L nkL /

so the , 3 -effect is o(R) compared to diffusion.

If we suppose that the second order statistics disappear (or at least that

the o< -effect vanishes), then the diffusion term must balance with the 53 term.

: : 3L '3 - :
The ratio of the largest terms is R 7’“1 so R~ € and in general, if (j - 1)

)
order statistics vanish then R~ €4 .

The Bénard Dynamo

ln lecture #8 we learned that the kinetic energy of the flow in the rota-
ting Bénard Dynamo tends to concentrate in a very narrow spectrum in wave number
space and that the roll axes that are most easily excited tend to be aligned per-
pendicularly to the main field. In order to maintain this alignment the rolls ro-
tate slowly with the main field. Compared to the spherical dynamo this model is
ery easy to analyze but we should also consider the possible defects of the ro-

tating Bénard dynamo.

One problem may arise from the degeneracy which allows multiple-roll solu-
tions. |If walls could be imposed which would not allow rotation of the rolls while
still allowing the existance of several nearby wave numbers then an o< -effect
would still be present. In this case however the o< matrix would be very aniso-
tropic and as a result the components of the magnetic field will be of very dif-

ferent magnitudes.

It is also very likely that the Béhard Dynamo is unstable for larger fields
than we considered. In the weak field analysis the total heat flux was fixed.
—

Physically we would imagine that the addition of B field would further decrease

the eigenvalues and the dynamo would take off.
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If the Hartmann number is in the intermediate field range, /Vlazjé:,
then the magnetic field terms enter into the perturbation equations at the same
level that the heat flux is determined. The steady state solution with two
orthogonal rolls was found to be unstable to the intermediate field, and numer-
ical calculations by Yves Fautrell indicate that for certain conditions, Bénard

dynamos in the strong field regime are also unstable.

Convective Dynamo Action in a Sphere

This topic will be difficult to study directly since no working models of
a spherical convective dynamo have been fully explores. We will therefore limit

ourselves to a few general properties imposed by the sphericity.

We start with the simplest system and work up in complexity by incorpo-

rating more of the physics. The simplest model is simply geostrophic motion.

Geostrophic Motion: Here we have only the balance of the pressure gra-

dient with the Coriolis acceleration.

_. -
UP+ 2L+ u vV-u =0
and we require the normal component of the velocity to vanish on the sphere, S.
Taking the curl we have b 3
oz

The only constant vector which can be tangent to both intercepts of S
-
with a vertical line is parallel to l? . Hence, by incompressibility, the
velocity is only a function of L and we write it as
- = > 2\~
u=,°w\,o))q,, p=(XT+y?)
Geostrophic balance alone is not enough since it neglects convection and
the coupling of the flow to the magnetic field, but we are interested in how mo-
tion similar to this might be set up by nonlinear processes in a convective sys-

tem. Note that no geostrophic motion is possible if T =0onS.

Taylor's Constraint: We expect the magnetic field to play some role in

the dynamic balance in the core. Therefore we add a magnetic field and ''every-

thing else'. i 2.
il { - - - Q.
VP+2QXM+7/3°—BX<VXB)-}

In cylindrical component form this can be written

ce o PYc] B 28
Ko bunt [BGE - 320505 - 5
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P

Consider the @ -component. If we integrate this equation over the
cylindrical surface inbedded in the sphere, the result will be the torque on
the cylinder. We are assuming that all of the physics is included so we may
set U = 0 on S, and so there is no flux through the spherical caps. Only two

of the terms contribute to the integral of the ¢ =equation.

(e e o 9B 3B, 508
I(}O):(}S‘? OLS:H;I,;);Q ‘L‘)é—a—;‘&i—T)—g_ﬁ;‘f)d_s
}7

‘P
This is Taylor's Constraint. This condition must be satisfied by B at
every instant. We can write Taylor's Constraint in a slightly different form
-
if B is axisymmetric and

E=BT?+V...A74, ., Bs?0 sn S.

>
We substitute the axisymmetric form for B into the equation

esep®
IA 3B A dpB
= ( = e, Al oy W e
/4/0,1 Pl g (ap =% 5% fo)c}z-
~SG-p?
[ T
o d _» °A
—-’l'ﬁ—d; P T B de
~limpt

Thus, if the ¢@-component of force is negligible, the inteqral must vanish
learly Vi
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Note that the parity of A and B for dipole symmetry (i.e. A even, B odd)
should make this a non-trivial constraint. What are the implications on the

dynamo problem?

A Non-existance Theorem. Consider a dynamo with the following four properties:

(i) the dynamo is essentially axisymmetric,
)ee
(ii) ¥ =0 or at least negligible,
]
(iii) 8 >> A (e.g. Braginskii's Dynamo where A =0 (75 B)

(iv) there is no oxX-effect in the mean field equation for B.

Then the dynamo runs down in that B decays to O.

Proof: Integrate the Z-component equation for B, keeping only the dominant
terms. ( 2
P=-—— B + m(p,t
2#/00 q) P)
imilarly, from the [ -component equation we get
By)
2P, 1 prr B 0 -0
ap"’upo‘aq’ﬁ °.° s

Combine these two equations

If we define UWyz=pow then w= — (}'< B">,
L T 2aMR, P)+7;

Now [B satisfies Braginskii's Equation based on smoothing,
oB 7.0ty ., SO

Substitute for w from the above expression, multiply by E%éot and inte-

grate over the spherical core

d (L B y.v(pg)dv= | Lh(o- 4 2 [9wy VpA] dv
Ef 02 d-V‘l'j 3 1% V<P B)d-\/ épz (V P;)de+é y L [ X PA]?
vy v
The second term vanishes because §7 is divergence free and B vanishes

on S. The third term can be rewritten as

8 e 8 ot ) '

B (v )8dv s 0 B (20 3 - 2By s
n (v(F) dv.

The last term can be separated into two parts.

BT vws opn] dve L Sﬁ(vxwpmfm i | 7 0 Fas DAY dv

"

n

29up,

up,
Butfg(VSx VPA)?JV -0 by Taylors constraint and the final term can be
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further expanded.

S RErvondy - §[18 (5 (00 22 - ) 2] 1] o

-3 [P - SRR S
S HECR SRS LT
=0

since 3 = o on S

Thus, the energy equation for [3 reduces to
- / 1
. d (7 8)* " BYd
-— = — WL F = V.
= 1\(v5)
B must decay exponentially, if the four assumptions we made initially are to

hold. It is of interest to note that the addition of Taylor's Constraint was

sufficient to destroy the oK -effect in Braginskii's kinematic model.

Breaking the theorem. In order to have dynamo action in a sphere one or more of

the conditions must be relaxed. Braginskii (1975) hypothesized that 3‘

though small, is not negligible. He proposes that A2<<Aﬁso that the poloidal
field is almost vertical. The core-mantle coupling i5 important due to eddy
currents induced in the mantle. ©&C is prescribed and there is buoyancy in the
Braginskii model. The object is to discover the function C,(p‘t) given all of

the assumptions.

Another possible way to break the theorem is to include two X -effects

ee
or put in a radial dependence of 2. Malkus and Proctor proposed a model where

the o2 -effect is important. |If we take a plausible ¢ (one that is odd in & ),
the B field can be prevented from dying aﬁay. If we write the force equation as
-
352 g £& ALL + EQ*L

we can regard this as a predictive equation. By evolving the fields numerically,
the role Taylor condition can be investigated. The result seems to be numerical

equilibration to the Taylor condition.

Convective Dynamo. Nondimensionalizing the equations whould give a good indi-
the problems we face in attempting to solve the problem of a complete

jynamo.

ybles in the problem can be scaled as follows:

[ S55 y w—
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o LL |A
Temp ~ —3% Magnetic Field ~~ (251/“}70“_)
YA )
Unit of speed ~ J%‘
The resulting nondimensional equations are
dfui x 4 +QP é v f)" R TT EV' L
S'ZI FEa tDxVaA ey S
3—14-; -VT—-l(n-—VzT‘-‘l (uniform heating)

3—5—015=an*§

The values of the coefficients for the earth core can be estimated as,

" 4 &  sg%ls
Sazpz ~ 10 R“_lpcpq’_ﬂ. ~ |00
E = Ekman No. ~]0-H -’]_K ~ |o~"

Calculations by Proctor indicate that we can probably neglect terms mul-
tiplied by S and E. The effect of large ﬁi; still remains to be solved. |If
there were some region in a sphere where convection were allowed to occur, it
might be possible to make the convective system thin while increasing the F(a .
This would force the existance of one small length scale to be important in the
problem so a smoothing method could be used. Then, in a thin geometry we could
see if we recovered results obtained previously.

Notes submitted by

Dean S. Oliver
and Shigeki Mitsumoto
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lLecture #10 APPROX IMATE DESCRIPTIONS: MODAL, DISC, CONCEPTUAL

In order to approximately study the convective dynamo there are several
useful approaches quite different from formal asymptotics but still very useful
for understanding the dynamics of the system at an almost structural level.
There are many examples of simple models that exhibit behavior very similar to
the record of magnetic reversals of the earth's field. We will examine several

of these models.

The simple disc dynamo consists of a disc
driven by a constant torque and spinning in a mag- P
netic field. This model has the equivalent of an &::fziégz;;}cw
u> -effect without an o< -effect (although at this S
level we cannot attach much of a distinction be-

tween them). |If the rotation rate is large enough A

the field will increase.

The idea in looking at this simple laboratory model of a dynamo is to
formulate ordinary differential equations which capture the essential elements
of the system. The two equations describing the currents and the torque are

L.i + RI = Mw 1

and T 2 T= Mi>

where C is the inertia and M is the mutual inductance of the disc. If these

are then nondimensionalized the result is

i+ﬂx:iy
y =1~ x*

These can be solved in the form

(y-w)dy = ‘;Xz) dx.

If we look then at the phase plane we see that oscillitory solutions ex-

ist but the dynamo cannot reverse.

The coupled-disc dynamo of Rikitake is slightly more complex than the

simple disc model.
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We can think of the current through one loop as representing the poloidal
field while the other represents the toroidal field. Insofar as the kinematic
dynamo is concerned we would call this a model of an <=dynamo (or >*-dynamo ).
Unlike simple disc, this coupled system exhibits aperiodic reversals (see e.qg.
Cook and Roberts, 1970).

Approximate models can be considered from several points of view. The
simple disc dynamo is an example of an analog for dynamo. They are similar in
some aspects of their behavior but that is all. The coupled discs dynamo is an
example of a heuristic model. An attempt has been made to put some physics into

the model: in this case the coupling of the poloidal and toroidal fields.

The simple disc with a shunt carried the heuristic process one step fur-

ther. Malkus and Howard proposed that we should reason not only from how the
laboratory dynamo works but also on the basis of how the theoretical models we
have been looking at would work. Consider a model with a poloidal field, A,

and a toroidal field, B. In an oALw-kinematic dynamo we could write the follow-

ing equations to describe the time dependence of A and B.

A+,(,(A:O(B
BxqB =wA
M and n are the effective diffusivities for the two fields. |If we setd = ¢y,

and w=z W, , we would be back to the two-disc dynamo model. Instead of this, we

take oL to be a constant as before, but allow ¢u to vary according to the equa-

tion, Ceo=T-VvVw- AR

T is the external torque on the system,Vw describes the viscous torque and AB is
A
the reaction of the field back on the system. It is reminiscent of the q> -com-

ponent of the momentum equation in cylindrical coordinates,

P - - ee
3—:3"‘ A—'ﬁ-(BxVX B)?—qu= ?‘?

In order to realize this system mechanically, it is only necessary to add a
shunt to the simple disc dynamo.

The equations for this dynamo model are:
MaTI, s Lglr RyI, + R, (I,-1,)
(T.-1)R. = L, I,+I,R,
Ces s T-ML, T, - Vw
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Circuit Diagram

The Shunted Dynamo

Kay Robbins transformed the variables in the following manner:

[t’w’Il‘Iz] [Ttao('()("r;g ))ﬂlj, O(Z'J

where T =z L4 : J= (Ru*RJ(Ry+ R,)
R4+ Rs R,M
2 _ RR Y g &
< 5 MRS T R R,

Then the equations become

dx _ =
o5 = R-yE VX
.j_?:)(‘\/—i‘.
dy -
o (x-y)
where o = (Ry*R)T
Lw
e LfL,Rs
Al L

Three steady-state solutions to these equations exist. The easiest to con-
sider is the case of convection without fields so that Yy == 0 and x= RA, -
To examine the stability of this case we linearize the equations around the point

At .
(R/éu » ©,0) by putting X = R/V 4 y,za(e . The equations reduce to

| A+ o =

' =0

|~ R A+
So Az-2(+)e s V(e » 17 (R/v-1) for the unstable root. If RAy <1 all
solutions approach the zero field solution. |If R/v > | the eigenvalue is positive

and the Field is unstable to the addition of magnetic field in the weak limit. The

Ferr—y r——y

g ———
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other critical points have nonzero magnetic field. |If we repeat the above pro-
cedure and linearize around the points (I,.tJR-v,t\/R-V)the eigenvalue problem
reduces to a solution of the equation

Ne(p+l+7) P+ (vr+ RIA+ 2(R=-V)o =0

As the constant term,lO’(R-‘V)is positive, the necessary and sufficient
condition for A to have a positive real part is that the cubic equation can be

written in the following form:

A=A +idD)} {A-(A-iAD) (el )=0 AL>0

For the critical point 7\,.5 0 thenz = e
f
7\’+/1,.7\4r 7l', Ay hi Ae =0
If we compare terms with the eigenvalue equation we find that at the critical

point 20 (R-V) z (r+V+1) (Vs R)-

TV(r+V+3)
Therefore Re= (GT—VH

As R increases, the first positive real value of R occurs for complex

The dynamo is unstable to growing oscillations for R > Re-

|

RC

——— —

=

v+l

The question of behavior below Rcis not answered by the linear theory,
but solutions of the dynamo equations can be unstable well below the point of
linear stability. It turns out that there is a critical value of R such that
the fields characterized by R< Rsc are completely stable. P\$c has been deter-
mined numerically for the system of equations we have considered but it has not

proved possible to calculate Rsc analytically.

Convective models

We keep the same two basic equations for the poloidal and toroidal fields,
AsrspuA:=a’
B « n B:wA

but now we attach a slightly different meaning to the forcing equation. In a con-

vective model « should represent the response to thermal driving in the presence
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of a magnetic field, i.e. a modified thermal wind. |If we let @ denote the
mean temperature perturbation then for (W we write (neglecting "inertia')

w:k ®-K,q(A,B).
In other words, the distortion of the mean temperature field gives rise instan-

taneously to & .

We still need equations for ¢ and ® so we should consider the effects
of small scale quantities. Let & be the small scale temperature and let
be the small scale velocity. Ideally € should be correlated to W by an equa-

tion of the form: . ¥ :
G+1'@ =z Kuli-k®),

\
~

The term on the right represents the effect of the advection on the small
scale of the distortion of the mean temperature profile. We assume, instead,
that & is related by the simpler equation,

O=hku(1-R®),
so that if {4©is the convective heat flux then
ub? = kUS> ()-k®)
It is the convective heat flux which distorts the mean temperature profile, so
@+r X ® =ky, <UD ([-k ®).
Only o<“ remains to be determined. In first-order field models & can be

written

o x LUEYN(ALIB) -

Letting A be a function of A and B allows for effects absent in two scale
smoothing. But take A to be a constant here. We still need an equation for
o, or <L) . Multiply the momentum equation by W and average, then, if

the inertia is small (£ <<1l) the equation is
& - <u <[R (1-h®) - QAB) - R (A.B) o <u*>
where Q(A,B) is the back-reaction of the mean field and R(A,B) of the small
scale magnetic field. After rapid equilibration, with R(A B) taken as l.
%R, I~k ®)-Q(AR)

The equations are then
AsuA =[R (-k®)-06) B

B+Vl 3 =(K,@-K,‘i’3/4

®+ %@ KR, (1-k ®)-Ql1-k ®)

otice that if w is identified with the mean temperature perturbation

Sl ki Sk
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b and some nonlinear effects are ignored, one recovers the model of Malkus and
Howard. Equilibria and stability are highly dependent on the values of the
parameters. In some models AB is put in for Q. We would at least like to know
if Q is positive definite and perhaps we can get it from the Physics.

f Kennet's '"'ABCDE'' Model 1looks at the full equations but considers only certain

modes. It includes both convection and the Lorenz force. The model assumes

only one temperature, velocity and mean temperature perturbation modes.

= (c%ﬂﬂd)m ™7z, C%& cor iz, fsin mfz) w(t)

sin 2mTz ®()

m
g = Fsmmita 6(t)
®
B

i

( :—x 9 (4Ydeps N7z, J%g-ws nTE, gSin nz) A (t)

*_( akg:;B\; _ g21’ O)
; Then, if we disregard positive constant multipliers the equations have the form:
L=6-u-AB

6=z-6 +u(l-k®)

®=-®+rub

A = =M+ B

B H -'B-PLLA

The equations are very similar to Soward's model. The magnetic field has
two components. The convective system without the magnetic back reaction can be

compared with the shunted disc model.

We end with one possible idea for further research. It may be possible
to apply variational principles to obtain dynamos. We would look at the system
which maximizes the growth of magnetic energy given a particular state. If we
assume that all the energy flows into the mode which causes the greatest maximum

growth, an o¢ -effect would be generated.

Notes submitted by
Shigeki Mitsumoto
and Dean S. Oliver
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SEMINARS
and
ABSTRACTS OF SEMINARS

ON FLUID MOTION AT THE SURFACE OF THE CORE
Edward R. Benton

Two different methods of obtaining unique horizontal fluid motions
adjacent to the core-mantle boundary using geomagnetic measurements at earth's
surface are considered. The mantle is taken as a spherical annulus of inner
(outer) radius r = b = 3485 KM, (r = a = 6371.2 KM). The core fluid is assumed
to be sufficiently highly conducting that the frozen flux assumption holds to
leading order, and to the same order the mantle is an insulator. However, core
conductivity is not supposed sufficiently large that a current sheet exists at
r = b and the magnetohydrodynamic boundary layer there is largely ignored (on
the basis that, because the core magnetic Prandtl number is small, then so
also should be the jump in 7 x B across the layer, at least if it is of Ekman-

Hartmann type).

For the first method, continuity of B across r = b, together with the
insulating nature of the mantle assures that one can find B at the top of the
core. Backus (1968) considered what velocity information could be obtained
primarily from the radial frozen flux induction equation. His result, that
null-flux curves (on which B = 0) move with the fluid, only determines the
core motion orthogonal to those contours, as he emphasized. Here we add fur-
ther ingredients from other components of 3 é’:’j")t =V (\\7 * E) The fol-

lowing results are obtained:

(1) At 18 points on r = b as the field presently stands B.- and By simul-
taneously vanish and these points are fluid tracers if the angular speed of
westward drift about earth's axis is locally uniform in latitude, i.e. if
5<W‘/gm 9}‘/35 O, where \N:U.&,and ® is colatitude. This can subsequently
be checked.

(2) At six points on r = b, B, and Bg simultaneously vanish and these
- - A
points are fluid tracers ifoV/0¢ % C, where V = V-6 . This can subsequently
be checked.

(3) At 17 points on r = b, Beg and B¢ simul taneously vanish and these

points are fluid tracers if the horizontal motion, at the edge of the boundary
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layer is, at most, a linear function of depth, i.e. ifa(v/ﬁ/aréo,afw76V3r= 0.

There is no direct way to verify or refute this assumption.

In the second method, we attempt to construct a systematic perturbation
procedure for the magnetohydrodynamics at the core-mantle boundary which can lead
to unique velocities, not just at isolated points or curves on r = b, but rather
nearly everywhere on r = b. Additional physical assumptions are, of course, needed
and what is put forward (still very much in the formative stages) is not what one
wwld claim to be a picture of what is actually occurring, but rather only that it

is one of many models that could be achieved. Its virtue is its solvability.

Scaled equations of interest are

v-B=0, T-E =g
UaB=] UxE:-2B/at (M

=

ik E; q; and ¢~ ) are, respectively,

’ y

)

j:O"(E‘*\/XB)
S -

where the scale factors for (B; V

[ = '1'""a/“;‘B°L."',UBa3 gouBoL_";c-,\. Here, we think of By~ 1073 tesla (10 gauss),

Lt

U=4.10"%n/sec (westward drift speed), L = 300 KM (a bit less than the smallest

scales resolved at r = b by spherical harmonic field models truncated at N = 12) .
Time is scaled with advection, LU™! ( = 24 vears with the above values). The two
small dimensionless parameters of the problem are then (in terms of dimensionsal

parameters)

)ZME/uaG:n(b)UL: Yzcz(/u.aﬁ"c UL)_‘

where o7, (b)=0, is the conductivity at the base of the mantle, say 200 mho/m
and O; the uniform core conductivity of 3-10% mho/m. For these values,
Im= 0,030, ¥, = 0.022.

The idea is to solve the system fj) throughout the mantle and sown to the
edge of the boundary layer subject to IB[:O(""),IE' =O(Y-") as r — oo,
with E known at r = a at two epochs separated by a few decades (or B and %‘known
at a single epoch) and with the following continuity conditions across the core-

mantle boundary:

(Bo= (1) (PxEY= (F-U»=0,(0)#0,<¥. B> # 0, <F XV > 40.

The velocity in the mantle is zero and the object is to find the slip velocity

just inside the core-mantle boundary layer.

P

The quantities §, V, j, E are assumed to have expansions of the form

R
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C ot Q"\< )zf'Qc[ /ytee+ However, (and this is a central assumption that

needs verification or refutation) volume charge in the mantle is assumed absent

at zeroth order. The argument is that if T, were truly zero, no charge from

j the core could leak into it and we assume no one put charge in the mantle to be-
i
£ gin with; so 3., ought to be proportional to 77, as dy,— O .

, 2 i
% 'qM'?JM,*‘ O(QN\IYZM Yzcy (z‘c 2 a?:p =+ V‘:_M .{)sz- Y)‘c/

We now have

4}514' » 0 e
The first three perturbation problems are then:
MANTLE CORE
SN 3 .
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- Y —T\
; e B
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= = 0 : 7 . =ik
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The zeroth order magnetic problem in the mantle is solved by the usual

geomagnetic field model in terms of a (truncated) spherical harmonic expansion

for the scalar potential. For the zeroth order electric problem in the mantle,




-

- =3
note that from the next order problem since jm = Tp E}A , in order that
o

< . jN\—O it is necessary that r oE -O , assuming spherically symmetric man-
tle conductivity. Then, CQAO is obtalned from the magnetic vector potential:
= and
UX A, = Ux[Vx (S, )]
— 3AM°

: 2t

oL
S
o
)

m
X
n

No potential part of E;\o is needed because it would have to be a solution of

Laplace's equiéion without radial variation. The form of 8”\
n n ~ [
= ot A f R ™ cosm@+h 'mmJPwl
5Mo angl g:o n ( l’) [gn ¢ i 51 ¢ K (0)

and this series converges rapidly.

With[iu; EAA, known and the continuity boundary conditions, we turn to
the zeroth order problem in the core, but evaluated at the core surface where
R
Verz=0for all © , ¢ . Ohm's law gives (with subscripts O temporarily sup-
pressed and the c on V dropped since the core is the only place where there is
motion): g
tCO s ‘-WBCT, Ec¢= VBC’_

Equation (3) gives the desired horizontal fluid motion at v =b in terms of the
horizontal electric field and the vertical magnetic field there; but these latter
quantities are all continuous across ¥ =b , so we can use the values at the base
of the mantle. Only at null flux curves where B. = 0 is the motion undetermined
(even there, field models should be adjusted or constrained to make null curves
of E6 ,E @ coincide with those of B.).

Once V, W have been found, (2) gives Ec, which measures the surface charge
needed to bring the ground state core radial electric field to the value zero in
the mantle. From ENM,, previously found, we also immediately obtain the leading
(horizontal) system of currents in the mantle from the last equation in the mantle
problem at order VLM‘ (provided a model of mantle conductivity is supplieu).

It is interesting that, from (3), the direction of core fluid motion, de-
pending as it does on the ratio of V to W, is independent of the relatively poorly
convergent series for B.. Thus, the streamline pattern is obtainable, on this

theory, purely from the secular variation of the magnetic vector potential.

=
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TRANSITION OF DECAYING TURBULENCE TO DECAYING INTERNAL GRAVITY WAVES
Thomas Dickey

Turbulence properties of neutral and stratified fluids have been studied
experimentally. Temporal decaying turbulence was created by towing a grid through
an initially quiescent fluid. Streak photographs of neutrally buoyant particles
and a photodigitizing system were used for velocity measurements. Conductivity
measurements were employed in the stratified experiments in order to ascertain
both stationary and dynamic values of density.

Results of the decaying turbulence experiment (neutral) indicated that
the initial period decay law, q2 o t_l, applies through wgt/M < 800 fer a
relatively high mesh Reynolds number, 48,260. Previous measurements at compar-
able Reynolgf_qubers have been limited to the range wgt/M <. L00. Anistropy
was small, w2 ful ~ 1.1, throughout the experiment. The dissipation rate was
found to decay inversely with the square of time. The Taylor microscale was eval-
uated and the turbulence Reynolds number was found to be Re A + 90.7 for the ex-
periment. Two point turbulence velocity correlation measurements were utilized
in evaluating the macro or integral length scale. A method of determining dis-
sipation from these correlations was presented.

The effect of stratification upon a turbulent flow created by a vertically
towed grid was determined for the first time. Conductivity probe measurements
of density variations indicated a turbulence-dominated regime through approximate-
ly Wgt/M = 275, after which internal gravity waves were predominant. The transi-
tion period features properties of both internal gravity waves and turbulence.The
decay rate of turbulence was virtually identical to that of the neutral case
through wgt/M - 275. However, after this time the decay rate was much lower. In-
tegral length scales were computed as before with greater values (by ~~ 20%) being
determined for the stratified case. A model for this experiment was developed so
that a general set of parameters could be used in predicting the initiation time
of the internal gravity waves. The results of the decaying turbulence experiments

are relevant to modeling dissipation in geophysical systems.
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THE APPLICATION TO THE EARTH OF A NEW METHOD FOR DETERMINING THE RADIUS
OF THE ELECTRICALLY-CONDUCTING FLUID CORE OF A PLANET
FROM EXTERNAL MAGNETIC OBSERVATIONS
Raymond Hide

The proposed new method (Hide, R., 1978, Nature 271: 640) when applied
to the Earth gives a core radius differing by less than 2% from the ''seismo-
logical' value. This finding strongly implies that effects due to ohmic decay,
though crucial in the dynamo process by which the magnetic field is produced,
can be treated as small perturbations in theories of the geomagnetic secular
variation. It also sets limits on the electrical conductivity of the lower man-
tle and the viscosity of the core. The new method could be exploited in the in-
vestigation of the internal structure of other magnetic planets: it will be par-
ticularly important to use the method to determine the size of the electrically-

conducting fluid core of Jupiter.

NONL INEAR OSCILLATIONS

Louis N. Howard

Three lectures about nonlinear oscillations and techniques for studying
them beginning with a description of various examples such as pendulums and ’
clocks, electronic oscillators and the van der Pol equation, and models of os- A
cillations in chemical or ecological systems. This was followed by a discus- }
sion of small amplitude weakly nonlinear oscillations which can be regarded as
arising from a change in stability of a stationary solution (critical point) ‘]
as some parameter is varied. When this change in stability occurs because a <
single conjugate pair of complex eigenvalues crosses the imaginary axis (''over- -
stability'"), and crosses at a nonzero rate with respect to the parameter varia- E

tion, the 'Hopf bifurcation theorem' asserts the existence - somewhere in the

neighborhood of the critical point in the phase space and the crossing point
in parameter space ('bifurcation point') - of a one-parameter family of peri-
odic solutions might not occur all for the same value of the parameter (the
bifurcation value); the latter indeed happens for an exactly linear system,
as well as some nonlinear ones. With some additional hypotheses about the
nonlinear terms, amounting to the statement that in an appropriate sense some

quadratic and/or cubic terms are genuinely present, one can be sure that a
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periodic solution will occur for each value of the parameter sufficiently close,
on one side or the other (but not both), to the bifurcation value. Furthermore,
if the bifurcation point is one at which a stable critical point loses its sta-
bility, and if the family of periodic solutions occurs on the unstable side
('supercritical bifurcation'), then at least close enough to the bifurcation

point the periodic solutions will be stable.

This theorem is the formalization of techniques which have been used very
extensively to calculate small amplitude oscillations in many kinds of systems,
some of them infinite dimensional like convection in rotating systems or hydro-

magnetic dynamos.

The second lecture began with the presentation of a convenient way to
organize the calculations required to study a Hopf bifurcation, and illustrated
this with an example. After this, attention was directed to singular perturba-
tion techniques which can be used to study certain strongly nonlinear oscillators.

Two major types were distinguished, relaxation oscillators and Flatto-Levinson

systems. Both refer to singular perturbation systems of the form
X'=¥<l,lj,£)
ey =9(x.y,£)

where x and y are vectors of dimensions n and m say. In both cases the x, vy

phase space contains an invariant n-dimensional submanifold, the 'slow manifold',
given asymptotically for £ —>Oby the equations g(x,y,0) = 0. Off the slow mani-
fold y must vary rapidly. |In a typical relaxation oscillator the slow manifold

is folded over so that if g(x,y,0) = 0 is solved for y, y = h(x), then for at
least some range of x the solution is multiple valued - often triple valued:

y = hy(x), hy(x), h_(x). Typically, though not invariably, the portions of the
slow manifold given by h4+(x) are attracting, while the middle sheet y = hg(x) is
not. Relaxation oscilla ions may occur when the motion on a stable part of the
slow manifold, described approximately by x = f(x,hs(x),0), say, always leads
eventually to an edge where this portion connects to y = hg{(x). When this point
is reached the trajectory jumps rapidly over to the other stable branch y = h (x)
and then moves along this portion to another edge, where it jumps back to the ori-
ginal sheet y = h+(x). Of course this process need not always tend toward a
closed orbit, but when it does we get a limit cycle of relaxation oscillator type.
In many interesting examples the motions on the slow manifold can be approximately

determined fairly easily, and from this a reasonably satisfactory description of
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the oscillator can be constructed. Such oscillations are characterized by the
alternation of short periods of rapid transition ('fast phases') with longer

periods of slow evolution ('relaxation phases'). The details of the rapid tran-
sition are usually none too simple, however, and a full asymptotic description

is often remarkably complicated, even in the simplest examples.

The Flatto-Levinson theorem is not particularly concerned with a folded
slow manifold, but with situations where on the slow manifold for one branch of
it) y = h(x) there is a limit cycle solution of x = f(x, h(x), 0). 1t is also
assumed that at least near this limit cycle the slow manifold has a 'hyperbolic
structure', meaning that gy(x,h(x), 0) is non-singular. Thus we are here con-
cerned with a singular perturbation of a limit cycle. The theorem asserts that
for small £ there is also a periodic solution of the full system, whose orbit

is close to that of the limit cycle of x = f(x, h(x), 0).

The third lecture began with the presentation of the application of the
Flatto-Levinson theorem to finding the limit cycle solution of a model chemical
oscillator (the 'Oregonator'). This was followed by a discussion of some topo-
logical methods for showing the existence of periodic solutions, mainly the Poin-
caré-Bendixson theorem in the plane, and the sequential box method of showing the
existence of fixed points of the Poincaré map, which has been successfully used
in certain higher dimensional cases. As an example the Hastings-Murray treat-
ment of the Oregonator was sketched. Finally certain methods for the numerical
calculation of periodic solutions, and some questions of numerical analysis espe-
cially relevant to finding unstable periodic solutions and dealing with stiff

systems like relaxation oscillators were touched upon.

MEL. ‘NG ICEBERGS
Herbert E. Huppert

Each year 1017 cubic metres of ice melts into the Weddell Sea. It can be
argued that the meiting takes place primarily along the sides of the icebergs.
Previous studies have led to two inconsistent suggestions: 1) that the relatively
fresh meltwater rises in a thin boundary layer up the side of the iceberg without
any significant mixing with the ocean; and 2) that the Grashof number based on
the total depth of the iceberg is so large, of order 10‘7, that the boundary

layer entrains a large amount of salty ocean water and the resulting mixture

A

el ' e




rises to the surface. A study by Huppert and Turner indicates that there is a

third and, in their opinion, more probable process. They argue that both of the
above suggestions neglected to include the effects of the existing salinity gra-
dient in the Weddell Sea. Modelling the melting in a series of laboratory exper-
iments, Huppert and Turner found that the meltwater moves through the boundary
layer and propagates mainly horizontally. The ambient fluid supplies the heat
for the melting, sinks in the surrounding density gradient until its buoyancy
force becomes zero and then turns into the interior. The melting thus generates
a series of layers, of thickness h say, containing regions of inwardly flowing
ambient fluid and outwardly flowing meltwater mixed with ambient fluid. A movie
and some slides were shown, some of the latter being copies of figures presented
in "Melting lIcebergs' by H. E. Huppert and J. S. Turner, Nature, 271, 5640: 46-
48, January 5, 1978, Experiments with different salinity gradients indicate that
8

when the Grashof number lies between 105 and 10° the layer thickness is given by

h =0.6608p/¢

where Op is the density difference between the meltwater and the ambient fluid
evaluated at the mean salinity in the water column and (p is the vertical density
gradient due to salt. It is planned to perform experiments extending the Grashof

number range in the near future.

Finally, it was observed that the heat generated by the audience during

the two-hour lecture would have greatly accelerated the melting of any iceberg.

SMOOTH EQUATIONS FOR ROUGH PROBLEMS
Joseph B. Keller

By a rough problem we mean a problem involving irregularly fluctuating
or rapidly varying functions. Such problems arise in the analysis of wave prop-
agation in random media, in the generation of magnetic fields by conducting
fluids in turbulent motion, etc. Because of the difficulty of analysing such
problems, it is desirable to replace them by problems involving only smooth
functions. The resulting smooth equations can then be treated much more com-
pletely than can those of the original problem. This goal has arisen in many
different contexts and has been attained by various methods. Many of them in-
volve some kind of averaging, such as spatial, temporal, or ensemble averaging,

or a combination of them. Other methods involve the introduction of multiple

spatial and/or temporal scales.
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In this lecture two different systematic methods are presented for ob-

taining smooth equations. One is the so-called smoothing method, which has

|
s
E

been used widely for about 15 years. It is usually based upon stochastic or
ensemble averaging, but it can be used also with other kinds of averaging. The
basic assumption underlying it is that the fluctuations in the given functions

and in the solutions are small.

The second method is that of using multiple space and time variables,
each corresponding to one of the scales of variation of the solution. The
assumption upon which this method is based is that there is a great disparity
between these different scales. For example the given coefficients may vary
rapidly, but the main part of the solution may vary slowly. Then equations for
this slowly varying part are obtained. The results can also be described in

terms of a suitable spatial or tempcral averaging procedure.

Finally it is shown how the two methods, that of smoothing and that of
multiple scales, can be combined. This combination simplifies some of the cal-
culation in the multi-space method, and is applicable when that method is

applicable.

As an example the two methods are applied to the equation governing a
magnetic field in a conducting fluid undergoing turbulent motion. Each method

leads to a dynamo equation for the large scale magnetic field.

e
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STATISTICAL DYNAMICS OF THE LORENZ MODEL
Edgar Knobloch

1. Introduction

There are two basic approaches to the problem of turbulence. |In the first,
one seeks to obtain statistical solutions to the equations of motion by taking
repeated moments of the equations and using some kind of a closure scheme to close
the hierarchy of moment equations. In the second, one solves nonlinear differ-
ential equations obtainable from the equations of motion, that have no explicit
stochastic element in them, but that can, for certain ranges of valués of the
parameters, exhibit apparently random solutions owing to the appearance of a
strange attractor. Both methods are assumed to be relevant to the problem of

"turbulence'', although the connection between the two is not immediately clear.

In the first part of this paper we shall consider the most famous example
of a system of equations with a strange attractor. These are the Lorenz (1963)
equations, derivable from the first nontrivial truncation of a modal expansion
of the equations for Benard convection in the Boussinesq approximation. The

equations may be written in the standard dimensionless form

¥ % (Y ~x) v
Yozrr-q-xz (1b)
Z =« V% rxy (1c)

Here the variable x measures the vertical convective velocity, y the tempera-
ture fluctuation. and z the mean convective temperature gradient: o~ is the
Prandt] number of the fluid, y is a reduced Rayleigh number (r = 1 for the on-
set of convection), and ¢ is related to the wavenumber of the convection rolls.
If oo and » are fixed at 10 and 8/3 respectively (the values originally used
by Saltzman (1962)), and r is gradually increased, it is found that at r = 24.74
the solutions to the equations become unstable according to the linear theory.
although there exist finite amplitude instabilities already for r > 21. The sys-

tem is then in the '"'turbulent'' state.

In the following section we shall apply to equations (1) the techniques
used in the first of the above approaches and shall compare the results of such a

calculation with the numerical evaluation of certain statistical averages of the

solution carried out by Licke (1976). We shall find good agreement between the
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theory and the numerical results. We hope in this way to show that these two,
apparently quite unrelated, approaches to turbulence theory are in fact closely
related, and to suggest that both methods are useful in contributing to our un-

derstanding of the physics of turbulence.

In the second part of this work we examine the variational problem for
the Lorenz model, and suggest a new and potentially very useful method for carry-

ing out an approximate statistical mechanics of the Lorenz model and other sys-

tems with strange attractors.

Il. Statistical dynamics of the Lorenz model

In this section we shall be concerned with calculating various time aver-

ages of the solution to equations (1) in the turbulent regime.

From the equations it is easy to show that

(xy=dyr>=<Kxz>:= <yi>=0 (2)
where the angular brackets denote time averages. Throughout what follows, we
shall assume that the solutions of (1) in the turbulent regime are ergodic. Thus
we shall assume that we may identify averages over an ensemble of realizations
of the solution with time averages in any one realization. In particular we shall
assume that the solutions are statistically stationary. There is ample evidence
for this property from numerical investigation, but a rigorous mathematical
proof of this property is not available. As a consequence of this assumption

all time derivatives of averages vanish. By writing down quantities of the form

d . Lo BA, L BA, , BAg . o
p <A(l,lj,2>>-< Sy Xt o - z > = C 3)

and using equations (1), it is possible to obtain an infinite number of relations

between various averages. One obtains (cf. Ludke 1976)

<7;h'j> = xRS Aointeger (4a)

X%y & pLay (4b)

(X2y- \’)u/j£> = C<r+¢)£<t3‘ > = <x*) ] (L4c)
(XYy2? = vca*?y (4d)

&2y = o [eytr- Ol (v ey (ke)

v {xrzy - 20’l:<x357~<x’2>] +<x”y . (L)

These relations have been verified numerically by Lucke (1976), providing fur-

ther evidence for the validity of the stationariness hypothesis. From equations
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(4) one obtains an important identity
Lo R = (-0 = v[(r-) Gy - (2. 5

An equivalent result has been given by Malkus (1972):

S o 2.
(™3 s pd®) = V(r-1) -5 SBZZ ., <{Z2-<2) 6)

o?* <z <z>
. 1 . . .
Since <X >==<¥‘37|s the convective heat flux, this result shows that the heat
flux transported in turbulent convection has to be less than that transported
in steady convection (;( =0 ,2=2Y . This important result is derived by

another method in section IIl. In particular equations (5) and (6) show that
%
(r-1) = (r=1)<z> 2 <2&% (7)
with equality only in steady convection.

It is to be observed that the number of relations of the type (3) is in-
sufficient to determine all the averages. For example, the relations (4) only
enable one to express the low order moments in terms of the two unknown correla-
tions <2), and (21) , that are constrained only by the inequality (7). Our task

will be to calculate these two moments, and other such essentual moments.

We shall use the general method for solving stochastic differential equa-
tions with rapidly fluctuating coefficients (Ban Kampen 1974, 1976). Suppose

that we have a stochastic differential equation of the form

df

== L (&

I = L+, (8)
where L(t) is a stochastic matrix. |If Lo is the mean of L, and L} = L-Ly is the

rapidly fluctuating part of L that need not be independent of f, then the mean of

he process f, < f)> , satisfies the equation

=Lt
4 (- [Lns dT < Li(t)" L (t-T))a }<$(t>> (9)

o
In order to apply this theory to the Lorenz model we rewrite equations (1),

by eliminating y, in the form

X+ % + (—a+w(ENXx=0 (10)

where a_:f[r_g—<z>], 4=+ ()
w ) = o[z~ <z)] (12)

and é""’*"'QdF(T’c_-xz)*xz (13)

Equation (10) is thus an equation of a linear ''oscillator" with a zero-mean fre-

quency modulation v (t). The quantity a is always positive definite as can be
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seen from the inequality (7). To the author's knowledge the present method has
not been applied to a damped simple harmonic oscillator with a random frequency
component. The only treatment of such a system hitherto carried out has been
done by Bourret (1971) using the so-called Bourret (1962) integral equation.
However this equation is not a self-consistent approximation for short correla-
tion times (Van Kampen 1974). We know from numerical studies that in the tur-
bulent regime the quantities x and z are both rapidly fluctuating in time. This
can be seen for example in the paper by Robbins (1977) dealing with the equa-
tions for the disk dynamo with a shunt, which can be transformed into the stan-
dard Lorenz form (1). UJ(C) is thus a rapidly fluctuating zero-mean random pro-

cess. In order to calculate{ 2> , we shall calculate<X> from equation (10).

Writing it in the form (8), we obtain

In order to apply equation (9), we have to calculate the quantity exp I .+,

This can be done most easily in the following way. Observe that f = f, expl-t
is a solution of the set of ordinary djfferential equations
f=lof. (15)
Seeking solutions proportional to exp st, we can calculate the eigenvalues S of
the system (15). They are given by
S==¥ > S=-4*2 , AT = 4a + 4" (16)

The general solution to the system (15) is then a superposition of these three

funcamental solutions: ot
£ 0o LA B e CE) (17a)
/
The corresponding expressions for f, and f3 follow from equation (15)
-AT
£, - L (- 8A(A-6) B - (A e 8y C7) (17b)
" at S U o
‘f‘?:-’aj,{'t(-'l +(Abr-a)Be” + (N +br-a)Ce"7). (17¢)

If the coefficients A, B, C are now eliminated in favor of fy(o), f (o), f3(o),

equations (17) can be written in the form f;(t) = Sijfj(o), where S Z exp Lot is

known. The following elements of S will be required in what follows:
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/\25,.=Jf"t[2a*bks}nh At+(2a+4%) cosh at] (13a)
XS 2474 + A sinh At +42osh A L] (18b)
Xsis 2% coshat 1] (18¢)
XS, =2 [at (cosh At-1)¢ a A sinh 2t] (184)
XS0z 220 da cosh At) (18e)
A‘su_-,_-“[—(r(cosh At-0+ Asinb ) t] (18F)

The quantity exp - L4t is obtained by changing the sign of t in the above ex-
pressions. Evaluating the expression on the right side of equation (9) using

the results (14) and (18), we obtain finally the equations

d (x® . :
T X > 24xX? (19a)
%‘4""‘):["-* Z(b(7-09)+ 28)]<x 7t [ b (F-oc]cxXy4 <3T) (19b)
ﬁ(;’(i) = %[Ct3’¢(1+—;-_#)o<—'—,(ﬂﬂ](x*)*20-(1)'4)#[-16*#.(0'—“%;2‘) ) (19¢)
o a0
where ‘ -
o< =f°otr7 (T)coskkf,ﬁzjdfrz (T)sinh Ar,zr:jdhz(r), (20)
> 3 e
and q(t} is the autocorrelation function of the process w(t) defined by
Cw@w(¢') > 2 nlE-t") s n(T)- (21)
We have again assumed that the process w(#) is stationary. In what follows we

shall assume thatw (t) has an autocorrelation function that falls off suffi-
ciently rapidly that the quantities & , & , ¥ are well defined. As we are assum-
ing that the process x is also stationary we shall set the time derivatives of
the correlations equal to zero. From equations (19b) and (19¢c) it then follows

that 5 .
[a+2 (6 (F-=)+2)] [6-Z(5-=0]+ -i;[zajf»f (2a+b’)x- 6rB]= O (22)

An examination of the definitions (20) suggests the approximation

3, T¥F<< ok, (23)

valid for correlation times that are short, but not too short, as observed in

the numerical results (Robbins 1977). It then follows that
a >
4

is the condition required for statistically stationary solutions. This condition

(24)

oK =

gives the ''strength' of the fluctuations, or the energy input required on average
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to counterbalance the damping term. Thus (24) is an example of a fluctuation -
dissipation theorem for an equilibrium system. The other root of equation (22)
is negative and therefore unphysical. Or substituting the condition (24) into

equation (19b) we find that in the stationary state
CRr™) = @ <K D (25)
This is the usual result that the mean kinetic energy is equal to the mean po-

tential energy.

We now apply these results to the calculation of certain statistical
. 2 . z 22 > L
averages. Consider firsy. the quantlty_Q.o:—:(x >/<X>.From equations (11) and

(25) we obtain 5

S =elr-1-<27] (26)

o

On the other hand, using equation (6), we find

-~ 3 >

Q5= o roi- <e>] (27)
We shall be interested in studying the quantities and defined by

g <g> -~

<22)= AT Q<A< 1, (28)
and

2@y = (r-13¢i-0),; o< L=l (29)
From equations (26) - (29) we obtain the relation

;: A‘LG“/(O”—I"-A"—). (30)

Licke (1976) has carried out numerical computations of certain statistical aver-
ages of the solutions to the Lorenz equations in the turbulent regime. His graph
of < 2y against ¥ for 0" =10, and ¥V = 8/3, reproduced here as Fig.l, shows an
approximately straight line of slope slightly less than one. The slope of the
line for 30 << r < 150 is found to be 0.94, and it increases somewhat for larger
r . Equation (30), with ; = 0.06, and o = 10 then predicts that 4 = 051231,
in excellent agreement with the numerical results shown here in Fig. 2. The cor-
responding agreement between the predicted graph of Jl,= 0.78 Yr-1 and Licke's
result shown here in Fig.3 is not quite so good. Llcke's results show the same

Rayleigh number dependence, but with a coefficient closer to unity.

We shall define the autocorrelation time T; of the process w (¢) by the
relation o= 1 (0)T, . Substituting from equations (12), (21) and (24) we now

obtain

s 2 o ; 2
oo C22 Tran: 2T (on) A5 (ro0t - 1) 31)

or, using equation (30) to eliminate §

S—

o b
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T (r-1N(c- ) = (ot 1)

Ui lri3s T (r- 0600 @ I (32)

a-= (o ~1)

Suppose that, as a first approximation, g is independent of . (cf.Fig.1)
It then follows that A is independent of ¥ , so that from (32) it is necessary
that Q r oY) , with e independent of y . Recall that ¢, will turn out to

be a small number. Hence

e ) (33a)
Bo+ T, (o%1)

a0 T
Ho +Te (o %1)
The graph $2,= Vr-| is therefore well matched by

T, = 6.045 , f= o, Bg.30- (34)

R:Ec'(r-;)lz (r-1) . (33b)

This is stil in good agreement with Lucke's results. Observe that the dimension-
less correlation time is indeed a small number, so that the short autocorrela-
tion time approximation required for the derivation of equation (9) is indeed

satisfied.

Thus far we have been able to obtain good values of several quantities
given one numerical result. However, we have only used the equation for x in
terms of z. We shall now determine the correlation time Tji self-consistently
by considering the equation for z in terms of x. We shall then have theoretical
results for all the four quantities C_, Z , & and LuL,. In order to do the
calculation we shall need to know the quantity-\xuj’), which can be obtained

using the same method as used above.

Writing the equations for the five fourth-order moments in the form (8),

we obtain N
(¥1 T {o 4y © © o
kx® e R
¢ s -9
f= e dal S L, = S e vRE R @ 1358
oy © o 3a -3bl
| )'(‘l ) o o o Ha "'-l}J
y () o o o 0‘
-~ 0 o o ©
- o 2w o0 o ©
Ls | (35b)
Il o © = Wwgo o
o O O “Hw QO
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Again we have to calculate the matrix exp LoT . Proceeding as before we find
that the eigenvalues § of L, are given by
Sz, ~JhER, -3b22A (36)
2
where again 12= b+ Ha. The general solution is thus
- T 2AE . o, mRAE
[ (t)=0"2F AeB2 G Ca M D2t T BT, (37)
{
with corresponding results for%(t), Ao F’. (t) obtained from the equation

£=z1L,f . We can write the result in the form
1

wc(t)m'wt'f {A,B:LM, ¢, Dat™, E""ZM}* (38)

where the matrix | has the rows
LT (39a)
Tﬁf("ﬁ“"f%“%’t%'%) (39b)
Tyj= (= 2+ 2,7 Labs 40} e fAb+ 56 (39¢)
Tye (a7 Far*30A-46] = Zak e 41 L472- 407) (39d)
Ty = (a* -0* -4 ad xfadrs a*+2ab - L 4¥ FL42Azabn) (39e)

We can now determine the constants A, B, C, D, E in terms of f£{0(¢=1,...,5),

We obtain

XAz 6atf (- 12ab F,(0)+ (66™-12a) fy (0141264, (0)+ L5 (=) el
28 =(1a*+2ab+ 2ab V) f ()4 (-26°+ Ha k-2 K6 )E (D) + (- 66"~ 64 M), (0)
+(-4n-84)f, (o) - Hi (2 (40b)
XD =(a*+2abs 56"+ 4 A+ abr)f (o) + (bab+ 247222422 67) £, (0)
+(36% ta+360)F0) + (at-+2R) §, (0) +f (o) (40c)
c(A) = B(-2), E)y=D(-a). (40d)

The above relations determine the matrix exp Lyt as the matrix of coeffieients
of -fA‘_ (o) in the equations for $; (#) . 1n order to calculate the right-hand
side of equation (9), let

(e ()exp LoT L‘(t—T)e;p~L°T)=V‘L(T)X('C), (1)
where & is a5 x 5 matrix, and n the autocorrelation function of the process

(W . We shall be interested in the correlations < X4%) and <>.<1X*>. From
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equation (9) these are connected by the equations

—f;(x"> = U< X> (42a)
f—; X x¥y= (a.+§pdtr2 %, (T)< x“'>+(—6+jﬂd2‘ 7, (7)) <% %>
5 e 5
+(3*j°”’23'm () <x™x™>. (42b)
After a considerable amount of algebra the expressions for J,, and ¥, reduce
R s %li‘ cosh ?\T—l)»f% smh AT, ¥,=0 (43)

In the statistically stationary state ¥;, will not be required. Equations (42)
now give, using again the approximation (23), the relation
(%{‘—-a)(x") = 3LRPR* D (4k)
Using the stationariness condition (24), this finally becomes
@ <xX9> s {X*X*>. (45)
From equations (la) and (4) it now follows that

<X13L?=(v |+a'::m)[(0~17+10'7+ 20+ 1) (- )<z (Vs 200 2)<z“>] ) {6}

In order to estimate the autocorrelation time fg of the process w , we

now return to equation (13), and write it in the form
e / I_\ ; L | . il
Z rVZ—A(t):FXX-i—X = WYLKZ2s (47)

where 2 = 2-~¢Z) . Thus equation (47) is a Langevin equation with A(‘L) being
a zero-mean rapidly fluctuating forcing term. From the formal solution to equa-

tion (47), we find that

u =V (t- &'{{9 (t-t")

t . / 7, % 2
<z">:jt5dtdt_o. SAEA(Y)y = 25T < A*>, (48)
® o

where we have assumed that the forcing term A(t) has a short autocorrelation time,

Py

L. , and that the process 2z s statistically stationary. Thus

= b1
L2 >-<2y-= E%Té[(x"g‘)—v"ﬁﬁj- (49)
{
We shall suppose that the correlation times fc and fc are comparable. Then
using the definitions (28) and (29), and the result (46), we obtain

® ; (r-1)% (2074 V)(@+ 1) (D) T,
Tvi-a*yeT, (Je —=) {v = 3
REE LWLk 0% Se (re &) { " 4, (e=-) (™) T,

Upon using the results (30) and (33) we obtain a quadratic equation for T,

(50)

The physically meaningful root of this equation can be obtained approximately
by setting
r{>>0, To, Tror1 a*T,>7 2. (51)

m

[ s |




—p—

Although these conditions are not strictly satisfied for the values of the para-
meters used in Lucke's numerical calculations, they do give the correct order of
magnitude for the correlation time. We obtain

S - e

~ [8la+2V) B B g

= = = = | (52)
L I 20+V (r-1) 3 (r=1)

for o= 10, V = 8/3. We see now that the correlation time does have a weak Ray-

leigh number dependence; it varies between 0.I>TL > 0.02 for 50<r € 200. This
is in satisfactory agreement with the results (34) deduced on the basis of the
present theory and one numerical result. We have thus shown that an entirely self-
consistent theory follows from the application of stochastic differential equa-
tions to the Lorenz equations, one that not only predicts the correct functional
dependence on the Rayleigh number of various statistical averages, but that also
predicts quite well the numerical values of the quantities ; , & and _.Q-o char-
acteristic of the solution in the turbulent regime. Moreover there is some evi-
dence for the decrease of the correlation time with increasing r in Lucke's
numerical calculations. For example, the curve of<Z) vs. r in Fig.l deviates
upwards for large ¥ from the straight line defined for smaller values of r

More convincingly perhaps, the approximate formula

2 a'Tc
A ~ LI*G'TC (53)
shows that A decreases with increasing ¥ . Indeed, Fig.2 shows a decrease con-

) o ; 5
sistent with the F~ "2 behavior. We also predict that for large r , the curve

of .Q.: vs. I should have a slope that falls below unity.

™
Let us now turn our attention to the quantity_,Q 2 also calculated by

Licke. By definition

&2 e
‘Q?—<(2-<2>)’>'A‘ <7 o (54)

Using the results (28) and (46), the quantity (54) can be written in the form

£ = -7)1)—;[])1.(‘*.8_“-:‘)0” (20"+1)+2)]+ %’(Hé&’) %ZL;n(V+261+Gu+zo’) (55)

Substituting for a and <2> from equation (11) and (29), and using the result
(30), we obtain the result

>
XV 2 1Y

0= F(virrhoveae)e o (ra). (56)

Since O< A< | , it follows that for large enough r ,

v

Qo :(o___‘),/F‘_T, (57)
essentially independently of the correlation time 'Cc . For 0" =10, V = 8/3,
Licke finds numerically that Qug=1.77 . . . /¥ . Equation (57) on the other

hand predicts a slope of 8/9 = 0.888 - exactly half of Llcke's value. We have
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been unable to find the reason for this discrepancy. We note here that the re-
sult (57) predicts thatﬂlz( r-:}QM: 10.5 in agreement with Lucke's curve and
the mode-coupling calculation that he carried out for values of - in this re-
gion. It is at least certain that the formula for the slope in terms of J  and

Ay viz.%%FL~r1/ﬂ 2 , suggested by Lucke cannot be correct.

Finally, there appears to be no way of calculating the guantity
G A, & T
.ﬁlx,:w
lated above.

, also plotted by Licke, using only the fourth order moments calcu-

Ill. Variational approach and the statistical mechanics of the Lorenz Model

Ever since the pioneering paper of Howard (1963), variational methods have
assumed great importance in the study of turbulent convection. As the Lorenz equa-
tions are a truncation of the model expansion of the equations for the Bénard prob-
lem, it is of considerable interest to apply these techniques to this simpler sys-

tem in the hope of testing their convergence and accuracy.

Howard maximized the heat flux transported by the fluid between two hori-
zontal surfaces subject to two power integrals derived from the equation of mo-
tion by Malkus (1954), with the useful property that they led to a separable varia-
tional problem. In this way he was able to obtain upper bounds on the heat flux

in terms of the Rayleigh number, but independent of the Prandtl number.

In the present case we are interested in finding bounds on the total heat
flux, both convective and conductive, given in terms of the Lorenz variables by
< x{j>~+1)<'z7. The power integrals are obtained by taking moments of the Lorenz
equations. The first nontribial variational problem arises from the following

three constraints:

0=<xk>=o[<xy>-<x)] (58a)
0:<yy>z FLXYZ=<y >-<xyz> (58b)
he gagy = -V >4 cxye> (58c)

We wish to maximize the functional o given by
L= Cxyy+V<Er+ A,[<x«j>-<x‘}]4 %z[rouj)— 41«5’)-<u5;>]+;\,[<xq?)-v<'2>] . (59)
where),, Ag lJ are three Lagrange multipliers. The Euler-Lagrange equations

are

%%:(le,a» l,")y'l)\-"(k’*'la)j! = (60a)
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%4{*7\.*7\1?)**17\,3-('\z-k,)xa b (60b)
of .. - =
;é—- < (A2~AJ\X_I1 1\)7\31*)) o (60C/
From Eqs.(60a) and (60b) and the constraint (58a) we find that
X:ﬂ ) Alz )'1 = (6])
From the constraints (58b) and (58c) it then follows that
)LI: le =Yz = 7)()'"1) (62)
with the corresponding Lagrange multipliers
_ = ks
/\l: Al_-qk3_ Yol (63)

The result (62) is of course the steady convective solution to the Lorenz

equations (x =y = z = 0). Hence the maximum heat flux, 2% (¥ -1), is attained
in steady convection, and in nonsteady (turbulent) convection (within the Lorenz
model) the heat flux transported by the convection must be less. This is in
agreement with Eq.(6). What appears to be happening is that the optimal solution
becomes unstable at large enough Rayleigh numbers, resulting in slightly reduced
heat flux (c.f. Egs.(29) and (34)). It is as if the system were in fact trying
to maximize the flux but was being prevented from doing so by an intrinsic insta-

bility.

Because the heat flux is globally bounded by the steady convection, an
improved bound on the nonsteady convection cannot be achieved by adding more con-
straints - all the infinity of constraints derivable from the Lorenz equations by

taking higher moments are identically satisfied by the steady solution.

Two alternative approaches suggest themselves: either bounding from below,
or using alternative constraints to begin with. In what follows we shall adopt

the latter approach, since it leads naturally to a new and interesting way of

looking at the Lorenz model.

The choice of constraint is dictated by the desire that the steady solu-
tion not be the whole story. We therefore introduce constraints quadratic in x,

y, z, so that the corresponding Euler-Lagrange equations are now time-dependent.

Let
= <xyr 924 A [k oS ae ey - )y A, [ eyt rex

2l i X&) +2r <XYr+ ar<xTrya g “"j">]*>‘3[,< § % Sgts

+zv<x1a>—<x‘w’ﬂ, (64)

where A,, Ka s AJ are three Lagrange multipliers. The Euler-Lagrange equations
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i(a‘f)— TR (65)
dt \a4; 29
can be written in the form
.0 av
SEE St 66
).., X = S (66a)
Aay sal (66b)
Asd = -2 (66c)
where
V(z,c‘f,z)=(o"'/1,+ /\,)X:(I+27\,6‘1+2T7\:)7(5+(R,0'1+ Az>lj°+ )L,)(‘L("
V2, + 13\)":-:‘-2 rRax®z « 2(A,-V A xye + Ag x* 2% (67)

Thus the Euler-Lagrange equations contain no dissipative terms, and form a
Hamiltonian system describing the motion of a particle in a complicated poten-
tial V(x,y,z). The potential V is of sufficiently high order in x,y,z that we
may expect the kind of chaotic behavior of a particle in this potential that is
described by the Kolmogorov-Arnold-Moser theory for such systems. We may there-
fore attempt to describe the statistical mechanics of particles in such a poten-
tial. Since it is known that the bounding solutions (such as the steady convec-
tion) are not bad bounds for the unsteady convection, we may hope that the pre-
sent system approximates the Lorenz attractor quite well. By understanding the
equations (66) it is hoped to gain some understanding of those features of the

attractor that do not depend on the details of its topology.

Multiplying Eqgs.(66) by x, y, z respectively and adding, we find that the
system (66) has a first integral

E(xua)z A %% A g e Ay5% V (x,y,2) - K (@ constant). (68)
If we now average Eq.(67) and use the constraints, we find that

1[A,<>‘<’>«»12<«}’>+>\3<i‘>]=K+<x\j>+ p<z> (69)
This can be considered to be the analog of the virial theorem, and is a general

property of the Euler-Lagrange equations for constraints of the form
<CR¥yEE<x"yvay.

In order to compute the Lagrange multipliers, we take x,y,z moments of Egs.(66a) -

(66-c) respectively and use the assumed stationariness of the solution to observe

that <xX?» ==<X*) etc. Solving the resulting equations and using the constraints

we obtain
2 1
2 T i l + i ‘_)'_Sf i>‘<t‘1,>«] Na
2 k,c‘ [< F . <“3>] o [_<x3>+ s ‘;'( [ i <x‘z‘>—-r<x‘z)+<xv§1> (70a)
'1)\1[(._1("21)-7‘(#1)*<%\1‘>] 2 <XY>+ y<a> (70b)
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= 0c)
22, [ <x242) -V <xy )] <xyy (7
In order to study the statistical mechanics of particles moving in the

potential V(x,y,z), we define the probability distribution function
S e —AE —AE :
p(x.yz;x,4,2)= 27/ fdre?F (71)
where 7 is the 6-dimensional phase space, and /3 is the inverse of a '‘tempera-

ture'' that can be related to the Rayleigh number r by the relation
Jaade L0 9
jz-ﬁEdp 5 - Zﬂ

The probability distribution p is well defined only when the 'kinetic energy"

(72)

and the potential are both positive definite. It is therefore important to eval-

uate the Lagrange multipliers (70), by using the prescription
_pE -BE
L) =_/olf' ()2 /fc(/"_e."gb (73)

The resulting multipliers are then functions of /@ ; Eq.(72) shows that /4 is
known if the constant of motion K is known. This can be obtained from Eq. (69)

by evaluating the averages in (69) using the prescription (71) and the results

for the Lagrange multipliers. Equations (69) and (72) are thus an integral equa-
tion for 3 in terms of the parameters of the Lorenz model, in particular the
Rayleigh number r. Unfortunately it appears that K cannot be unambiguously deter-
mined from the steady convection solution because of divergence in the Lagrange
multipliers. These arise because the constraints become meaningless for the steady
convection. The next step in the calculation is the investigation of the exis-
tence of a possible phase transition at some critical /? (corresponding to a

critical Rayleigh number) by means of the usual thermodynamic relations (Landau
and Lifshitz, 1969) 2Py 2°p T (7 = :
2o ) = {— ) =0, s ], (74)

where the ''pressure'' p has to be calculated from the free energy F given in terms
of the partition function Z‘:f,o.'ﬂEdP by
I
F = "Zz&n & (75)

Unfortunately due to the difficulty of calculating the partition function
and other ensemble averages (73) arising from the high degree of the potential V
we have thus far been unsuccessful in carrying through this program. This diffi-
culty is inherent in the problem because lower order potentials will not have the
stochastic behavior predicted by the Kolmogorov-Arnold-Moser theory. It is also
possible that the bounding equations are too poor at low Rayleigh numbers, so that
no discontinuity in the statistical properties is required by the sudden appearance

of the strange attractor in the Lorenz system.
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IV. Discussion

In this paper we have seen that some systems with strange attractors,
such as the Lorenz model, can be treated by standard statistical methods that
are used in treating ''noisy'' systems. We have seen that these methods predict
the correct functional dependence of certain statistical averages on the Rayleigh
number r, as well as giving the correct amplitude to a good accuracy. In this
way we have shown that strange attractors and ''noisy'' systems, while apparently
dissimilar, can have a good deal in common if one is interested only in their
statistical properties. Indeed it is likely that the origin of many stochastic
systems lies in hidden nonlinear systems with strange attractors, and it is
therefore necessary to know that the details of the process producing the fluc-

tuations are irrelevant for the gross properties of the system.

In the second part of the paper we have suggested a new way of looking at
the Lorenz model and related systems with strange attractors. Although we have
thus far been unable to carry out the details of the calculations, we have seen
that such systems can be approximated by conservative systems for which the whole
machinery of equilibrium statistical physics can be employed. In this way it ap-
pears possible to calculate an approximate probability density distribution f>(f%
which can be used to calculate any desired statistical property. Thus a wealth
of new statistical properties could be investigated that is inaccessible to both

numerical analysis, and the method described in the first part of this work.

In conclusion we discuss the implications of the calculations presented
here for the Lorenz model to real turbulent convection. The first question that
is well illustrated by the Lorenz model is whether the heat flux in convection is
maximized by a laminar flow (Busse 1969, 1970; Howard, 1972). This thus far un-
resolved question has important consequences because it appears that in astrophy-
sical situations the optimal heat fluxes are never realized. The question then
arises whether due to instabilities of the laminar solutions a finite gap is

created between the maximal heat flux and that achieved by turbulent motions.

A promising aspect of the discussion in section 111 lies in its applica-

tion to Bénard convection, described by the equations

aT%+u‘Vu+-}‘TVP"°<37£‘_=VV1°_‘: (76)
T
Vew=0 (77)
¥
aLT v BT S XTY (78)

P

[ rovimrny VO

o)




_107-

where T% =T + TFZ.} is constant, and the remaining symbols have their usual

meanings (Howard 1963). The boundary conditions are T*(o) = Tg, T#(d) = To-AT,

u(o) = uld) = © . From Eqs.(76) - (78) the following two-dimensionless con-
;traints may be derived
(a*y s R<Tor) (79)
<THs-<Tu 9TorcTwr+ & Fiisia Tt & s ir's (80)
where u has been scaled by K/d, t by d’/x , T by & T, and
c=VY%, Rz _iji:_%AT_ 81)

Here «wr is the vertical convective velocity, and the angular brackets denote an
average over the whole convecting layer, while the horizontal overbar indicates

a horizontal average. In what follows we shall find it useful to include in both
averages also time averages. We note here the appearance of the parameter © R
rather than just R as in the variational problem considered by Howard (1963). This
appears to be the first time that it may be possible to obtain rigorous bounds on
the heat flux as a function of the Prandtl number o  , a result that would be of
considerable importance, particularly for astrophysical convection. For maximum

Nusselt number

Nz 1+ <wT) (82)
we obtain the Euler-Lagrange equations
. ~ 3T
Zl,u.—l..T—a—; = 0 (83a)
v 3T 5
2AV-A, Ty =0 (83b)

20,6 -2, T L +T (-2, e ReM s ac Ty - 2 Tur)r
TEI+2, <Tw>-2 Tw) =0 (83¢c)

.2).2'.}L+l,-a%-(,bg'VT)+ u'r(&u‘R—N,-?&,(Tw-)-&- 7‘-:.?&)-0—

+,,.,(.,n‘<fw>-7t,‘?w)n,%-v’r =0 (83d)
The Lagrange multipliers are given by
A0 R[< Th4¢wr TrcwTr- wTwi>- (wi>]cwT>
= <w‘r>[<‘°r“>+ <wTr<wT) - <w:fw-rT>¢ <w"r>] (84a)
A2[< TS ¢TIt = <q;.—fu:§'7~<w+>] 22<wT>, (84b)
Equations (83) can be combined to give

. [a‘at‘w.c.v]mu 2[2a%eTerne Twr-aFw)] - o, (85)
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which can be written in the current conservation form

[;at_+ w-2] @ =0 (86)

Thus the problem of convection is not too different from the Lorenz model, al-
though the presence here of partial differential equations greatly complicates

the calculation.
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Appendix

The Lorenz model is a special case of a particle moving according to the

v
o’

equation

x + (o+1) % = = (A1)

where V is a fourth order potential in x, with coefficients that obey an equation
of the form g

A+kAd=q(x), (A2)
so that the system is provided with a feedback (Spiegel, 1978). The generic (in

the sense of Thom fourth order potential is
1 >
\/:q-xl{—.‘.iAX—kX- (A3)
The Lorenz model can be shown to be equivalent to the above with *=0. 1t is of

some interest to know whether the methods described in section 11 can be applied

to the generic potential (A3).

In this case Eq.(10) becomes

X+ (1+0) % +[—a.+w(t)]’<

"

x>
>
=

Now <X > no longer vanishes; writing (AL) in the form

e HEIRA IR Y 9

and proceeding as before, we obtain

3
x>

<X+ °‘)<7(>1-[ a -

‘m Sl o ﬂ" o ox7 ()

For a stationary system, with the approximation (23)

[S—— S
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[o__"‘ }<x> =~k (A7)
42t
Similarly the second moments satisfy the equations
(2a+6) e x>z (6X+200)<%™> (A8)
<7'L1>+<a,- 2:':‘)<X’7 +k{xy=0 (A9)

One can now proceed as before, and get a necessary condition for stationariness
by eliminating <x?y , <x>> and <X > from the above equations. That condition

is now much more complicated than the condition (24), and does not lead to a sim-
ple quadratic equation for<Z> like Eq.(31). Nevertheless the method can be

relatively straightforwardly adapted to this generic case.
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INVISCID EQUILIBRATION }
Joseph Pedlosky

This seminar first briefly reviewed the general nature of the weakly I
nonlinear, finite amplitude dynamics of unstable waves. A general distinction :
was drawn between two classes of problems. |In the first for a given spatial
wavenumber, the linear stability threshold of the basic state is given by a ¢
critical parameter Pc which represents the point where energy extraction by
the instability just balances dissipation acting directly on the unstable mode. J

The slightly nonlinear extension of linear theory then gives the Landau equation

for the disturbance amplitude A, as

dA _ O’A-NDA3
dt

where @ is the linear growth rate and Np is a number (in general complex)
determined by the theory (see Stuart (1960) and Watson (1960)). The amplitude
evolution equation is not reversible in time and if Real (N) O the amplitude

evolves monotonically to a steady state.

In the second class the linear stability threshold is determined by a

balance between a stabilizing inviscid constraint and the destabilizing inviscid
mechanism associated with the instability. In this case the energy extraction i
is proportional to the rate of change of the disturbance amplitude rather than
the amplitude itself. The generic form for the supercritical inviscid amplitude
evolution equation is then

dA _ 5 )

dA _ s*a- N AB(A

aT*
where again, o is the linear growth rate. B(A) is a quadratic function of A
and N is the inviscid equilibration coefficient. For an example of meteorologi-

cal importance see Pedlosky (1970).

An example of thermal convection in the absence of dissipation was dis-
cussed. The convection is inhibited entirely by a uniform, horizontal magnetic
field By and for the purposes of illustration the convective motion was assumed
to occur in rolls oriented at right angles to the mean field (although rolls

along the field would in fact be unaffe%fed by the field). |If

T = ____Ji*,_z

uap/ozl

where B, is the mean field, L the layer depth, ap/a:a the unstable mean gradient, é
and g the magnetic permeability, then the critical value of T for a cell of

wavelength Zﬂ/k is
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TCJ: kK*ema*
where m is the vertical mode number. For slightly supercritical states
I'=T.(i-A
the amplitude of the convective cell was shown to satisty

{"3 2 & e
a0 B-aB(|B] - (B =0
where
2 ;2
oy s
(Krma?)
N:-—-“L~ m= 1 a2 g % =
B P (3m*n*-n7), 3.0 ‘B)t
so that the magnetic field of both the mean and the perturbation undergo long

period oscillations if M >0 (s*< 3vn{W3),

The presence of a small amount of dissipation was shown to lead to a
third order set of equations, which it was pointed out, can be transformed to
the set first discovered by Lorenz (1963) and which allow both stable limit

cycles and persistent aperiodic motions.
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MAGNETIC FLUX ROPES AND CONVECTION

Michael R.E. Proctor

In order to understand the observed intermittency of the magnetic flux

structures (usually called ropes or bundles) that tread the solar convection
zone, it is necessary to take account of the mutual interaction between fields
and flows. The kinematic aspects of flux concentration by persistent inexora-

ble motions are well understood (Weiss 1966, 1977; Busse 1975): the flux is ex-

pelled from regions with closed streamlines and ﬁoncentrated in their boundary
oy >
layers of B thickness R& it , where RM= L“/ﬁ is the magnetic Reynolds number

(U and L are velocity and length scales for the convection & and 0 is the

——

magnetic diffusivity). Since flux is conserved in the concentration process,

the peak field B; in the ropes is of order ByR, where B, is the mean vertical

field. Such strong fields are certainly dynamically important: indeed, near the
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surface of the photosphere B* appears to be so strong as to be approaching the
upper limit Bp“/I;;?; (where M is the permeability and Pa the external pres-
sure) set by consideration of normal stress across the edge of the flux rope.
Deeper down in the convection zone, though, pressure differences between the
rope and its surroundings are less significant and another type of dynamical
effect is possible. The Lorentz (j, B) forces, where j is the current density,
can act to impede the flow near th; flux rope, so that the local magnetic Rey-
nolds number (and so the amplification of the fluid) is less than for weak
fields. It seems possible that the rate of amplification will decrease so fast
with increasing flux that the peak field cannot exceed some global maximum B
as a function of the flux. To inv.stigate this, Galloway, Proctor and Weiss
(1978) considered a simple problem for an axisymmetric cylindrical geometry

in which a basic incompressible flow is confined to a cylinder of height d and

radius of order d and is driven by a prescribed body force. |If there is no
field Y =U, and the configuration is defined by the two dimensionless para-
3.5,
meters
[:{ = (yD)L Q,rld Q: BoL
M mpvn

where L is of the same order and P is the density and V the kinematic vis-
cosity of the fluid. Rm is large and the flow is such as to concentrate flux
at the base 2}= O of the cell is a measure of the amplification in the kinematic
limit (>0 ). The problem can be solved exactly in this limit since the axi-
symmetric flux rope formed on the axis only affects the flow in its immediate
vicinity provided that & is not so large that the rope is no longer thin.

The main result of the analysis is an explicit form for B” the peak field at

2 =C , the base of the rope, namely

d
% » tJ,/ =2 ’//\
B B, R, 2 &AL (e ey

: i/ :
where 4A‘:{;f Rﬂf and ?o (%) is the basic vertical flow on the axis of sym-
metry.

From this it can be seen that B* reaches its maximum By as a function
of & when &G = O (1 /én }?"':L. These results, while paving the way for the
solution of more complicated problems (see elsewhere in these notes), can also

be used to give rough estimates of the sizes of field to be expected at various

depths of the convection zone. (Galloway, Proctor, and Weiss 1977.)
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A CONVECTIVELY DRIVEN DYNAMO (Lecture #1)

Andrew Soward

There are reasons to believe that the geodynamo is the result of ther-
mal convection in the Earth's liquid core. Perhaps the simplest model which
isolates the influence of rotation on convection, is that of a Boussinesq fluid
confined in a plane layer of width L, rotating with angular velocity ,[l about
a vertical axis, heated from below and cooled from above. When the Ekman number,

S

Locs st £t o ¢ coc

E = V/ﬂ' ‘:: I i g = gvavity

d

VR ey 7

where YV is the kinematic viscosity, is small, the onset of instability is char-

acterized by convection cells with short horizontal length scale of order
L=E%L. Owing to the two length scale separation (€<< L ), this model pro-
vides a convenient starting point for the analytic development of a hydromag-

netic dynamo.

With a suitable choice of boundary conditions the linear solution de-
scribing steady convection can be represented as the sum of N-rolls, for which
the vertical velocity takes on the simple form

N ik (n)

w=3 wainTTze ™ = rece (Ik |<k,)-

n<i =

Here 3 is the vertical coordinate, k(n) is a horizontal wave number, k¢ is
14

the critical wave number describing the onset of instability and c.c. denotes
the complex conjugate of the expression preceeding it. Finite amplitude solu-
tions of this type together with their stability have been discussed by Kippers

and Lortz (1969) for the case of infinite Prandt]l number.

-
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When the fluid is electrically conducting the development of a skewed,
horizontal magnetic field §H ﬁj,t} is governed by the dynamo equation
'\ k2
O@H = 3 2 EH
= —_ %, = xaoibls

~
where t is the time, 3 is the unit vector in }-direction, N is the magnetic

diffusivity and the components of the tensor &< are

) ==

»

e 4 (n) ) . ~

pEEE (n™/ k" k™ ma -

o g2 (" PR )RR fain 2Ty
=_, ) I

Here H 'sin 2173 is the contribution made by the nth roll to the horizontal

average of the helicity ug.curl u. In our model, the boundaries are supposed to

be perfectly Cﬂfducting and so the dynamo equation is solved subject to
l B,d2=0 and 38, /33-0 on 3:0,L.

Provided that there is more than one roll (N > 1) and that the motion is suffi-
ciently vigorous magnetic field regeneration is possible. The results of Childress
and Soward (1972) and Soward (1974) indicate that, once the influence of the
ensuing weak Lorentz force is taken into account, the preferred mode of convection
is a roll whose axis is normal to (wave vector-@ is parallel to) a weighted

3 -average of B,. The resulting o& -effect tends to regenerate new magnetic field
in the direction perpendicular to the original field (i.e. in the directionéx_/_? e
Consequently the orientation of both the magnetic field and the most vigorously
convecting rolls tends to rotate on the magnetic diffusion time scale. |In this

way the system operates as an efficient dynamo.

In a limited parameter range corresponding to very weak magnetic fields
Soward (1974) demonstrated the existence of stable hydromagnetic dynamos. For
stronger magnetic fields, however, Childress (1976) has found that the dynamo is
unstable. The reason can be traced to the well-known result that, when the mag-
netic field is uniform, the critical Rayleigh number R. for the onset of convec-
tion in a rapidly rotating system initially decreases with increasing field
strength. For the hydromagnetic dynamo problem the implication is that as mag-
netic field grows so does the vigour of the convection. Consequently the o< -effect
becomes more intense and the magnetic field grows at an ever-increasing rate. One
may speculate, therefore, that the dynamo can only equilibrate when the Coriolis
and Lorentz forces are comparable. By contrast, Busse (1975) has developed a
similar dynamo model in an annulus rather than a plane layer in order to represent
more faithfully geometrical constraints imposed by the spherical shape of the
Earth's liquid core. In this case R. initially increases with increasing magnetic

field strength and so the stability of the dynamo is assured for weak magnetic

fields.
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A KINEMATIC THEORY OF LARGE MAGNETIC REYNOLDS NUMBER DYNAMOS
(Lecture #2)

Andrew Soward

When a magnetic field permeates an incompressible, perfectly conducting
fluid, the field lines are frozen to and move about with the fluid. If initially
the magnetic field at position X is b(x), then later when the fiyjq4 particle
has moved to 2-(x) the magnetic field is _

b6=4t.vX (1)

If instead the fluid has large but finite electrical conductivity, the above re-
sult only provides a correct first approximation for a limited time, since the
error increases indefinitely. To avoid this secular behaviour it is necessary
to allow the reference field b to evolve slowly on the magnetic diffusion time
scale. Any rapid development of the field caused by the advection of the field
lines is accommodated by the strain tensor 0 i},/ax;in (1). A further general-
isation of this Lagrangian description is made by introducing a reference fluid
velocity u(x) so that the actual fluid velocity at 5; is

Ww=dX/at+ w.VX, (2)

Here g, u (as well as b) depend on both X and time t. As a result of the

transformations, the magnetic induction equation becomes

a(_’/at:Vx(yx'é')+7Vt_6'*’ZVX§_, (3a)

where » is the magnetic diffusivity,
€= Cipy (tup =~ o) Bty | ONy = Jh e by > (3b)
- dk/l"—' 61".61.,,,, ,LA;j:—b%/aji' (VK&}/&IJ’,) (3¢ .d)

and ¥V denotes the gradient with respect to )X
This formulation provides an especially convenient method for considering

. Braginsky's (1964 a,b) nearly axisymmetric dynamo model (see Soward (1972),




e A S s €¥!IIl==IllllI!!IIll!!!IlIIllIIIl!!!!!!---'---""!!'

‘
. o ) s .

= 116 =

Moffatt (1978)). In essence we consider an axisymmetric reference flow,

u=Ud+E Uy (e<<)) (4a)
A
where gﬁ denotes the unit vector in the azimuthal direction and the suffix M

denotes the meridional component. Asymmetries of the real flow are accommodated

GZ:

of fluid particles from their mean trajectories, which according to the assumed

by the small displacement,

1%

=, (4b)

form (4a) are almost circular. Direct substitution of (4) into (3) shows that

the reference magnetic field is almost axisymmetric and has the form
A
L -l
¢=Bg+€b,+0(ERT) (5)
Here the asymmetric part of b is represented by the error term and R is the mag-

netic Reynolds number which is assumed to be large.

On the basis of the scaling in (4), we may take the ¢'—average of (3)
and legitimately neglect all averages of products of fluctuating quantities with

the exception of

é¢=_/13> (68)
where 2 Q‘Ti/a,l 2%
S & e ,v;..l.__z.)d 6b
(-]
and 4 is the distance from the axis of symmetry. Provided,
€L: O(R-I)

there is the possibility that the resulting o -effect is sufficiently large to

prevent the otherwise inevitable collapse of the meridional magnetic field.

It should be emphasized that u, differs significantly from the ® -average
of the actual (as opposed to the reference) meridional flow velocity. Indeed
when the latter average is zero, we may identify U With the systematic meridional
flow of fluid particles (this is the phenomena of Stokes drift). The difference
between the averages of actual and reference quantities accounts for Braginsky's
(1964 a,b) use of ''effective' variables, which are simply uy,and b introduced

in (4a) and (5).
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A STRANGE ATTRACTOR
Edward A. Spiegel

This discussion, based on work done with C. Marzec and with J.-P.Poyet is

aimed at exploring aperiodic behavior in the solutions of the dynamical system

e + av .t
X =- 3% -Eux (1)
where x = x(t) and the potential is a polynomial:
| m M2 xk
V= V(X 2)z =X -‘E'ock A) <%=+ (2)

The differentation of V in (1) is for fixed A ; but ./\ has time dependence
which may be specified explicitly or implied by a differential equation. We

consider the specific form

A=-e[Aeg ()], 3)

with constant € and A - It then remains to furnish the a{k(Z)and 3 (X)
A particular choice corresponds to the model studied by Lorenz'. Here, we con-

centrate on the examplez’3

= A;“z = 5: consT.,3 = )(__x3’ /,(_:O. (4)

The equilibrium surface &V/a)(:O plays an important role in the dyna-
mics. In the case of (4) this describes a pleated surfacel in (X,A,g) space.
The projection of the pleat onto the A—Splane is delineated by the cusp,
h=253/73 3 ; this shows the interest in the parameter3 B =f'§ A 6_3/1.

Equation (1) can be replaced by the two equations, )'<=>/,)"=—Vx-é/ui.
The flow divergence,a)'c/ax +ay'/a:j + 3%/5) , has the constant value -£ . Swarms
of representative points in (X,y\l) - space will condense down to zero volume
exponentially in time. The sets of points onto which these swarms ultimately
condense are called attractors. Attractors may be stable critical points or
stable limit cycles, for example. When they are sufficiently complex they are
called strange, to use the term suggested by Ruelle and Takens?. Normally,
strange attractors associated with QDE's are found by numerical integration.

But astronomers know that you do not need an ephemeris to study the form of an

RO
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orbit; it is often valuable to get the time out of the problem.

Let A be taken as independent variable X (t)= J—E(/'\),

te 142 (5)
+3(x) .
Then if prime denotes differentiation w.r.t. , (and we drop the tildes) we ‘
4 find
[(R+3 (= )(A +9)x +9x(?\+3:x ]: 3;\{ (6)

We obtain a standard-looking problem in matched asymptotic expansions whose

study reveals much about the role of g(x) in these affairs. Unfortunately, the

! (6) reduces to the equa-

inner problem is not easy; in one of the simpler cases
tion for the 2nd Painlevé€ transcendant. This is just the way to describe the
transition from one trough to another in V in terms of nonlinear turning point

theory (the inner equation is a nonlinear version of Airy's equation).

The traditional asymptotic methods, such as the method of averaging or
two-timing, are also very enlightening. For G << 1 the method of averaging for
the example (4) describes periodic orbits 3. When O & .62 these are stable but
they lose stability when ) increases through .62, to be replaced by quasiperi-

odic orbits. When é. increases through .75, the method no longer works easily

but by combining it with results from (6) we may be able to extend it.

The "transition" at % = .62 suggested by the asymptotics is reflected in
a corresponding change in the character of the numerical solutions. As ) is
increased through .62 the period of the limit cycle starts a series of doublings i
corresponding to what are called pitchfork bifurcationss. When & reaches .625 :
this doubling is over and the behavior seems genuinely aperiodic; a strange at-

tractor seems to have formed. In fact, the object which corresponds to the at-

tractor appears to exist even for §< .62, but it is not their attractor.

We have studied the form of the attractor mainly in (E, B, s)-space, where
\Z Iy % .
52(3/8) "%, B= A (3/§%)", E=387(x%+V) (7)

. . . 7 . .
To examine the solutions, we construct a Poincaré map, or surface of section, in

which successive crossings of the E-B plane with s » 0 are marked by a point, and
many such points are accumulated. For d = .625 the surface of section is that
shown in Fig.' for all initial conditions we have tried, apart from differences
in transients. |If we look at the very tip of one of the '‘leaves'' dangling from

the attractor shown in Fig.l and magnify it manyfold, we obtain Fig.2. The numer-

ical integrations available thus far are not sufficient to warrant another blowup,
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but we conjecture that this would only show a repeat, on a finer scale, of the
structure of Fig.2. |In other words we presume that the attractor has the struc-

ture of a Cantor set in one of its dimensions, much as Henon's’ well-known

model does. k

The asymptotic study of the case (4) revealed that in (E,B,A)-space

the curve defined by s = 0, § = o, seemed to play a special role. This is true

also for the appearance of strange behaviour in the numerical solutions. These
statements find a congenial expression in the language of catastrophe theoryl‘.

We may introduce a superpotential]

s _“24 moy (A ** o € (8)
m+ ey R(’H-l) x
where E is to be thought of as a parameter on the same footing as A . Now }

the condition aU/ax =0 is easily seen to be equivalent to 8:'\/’, hence we
have also that X = 0 and aV/ax =0D.These two conditions define the catastrophe
seth of U which, for m = 4, is called a swallow tail. We find that motion of a .
system point through the catastrophe set generally involves erratic behavior -
even when there is not a strange attractor. When there is one, the attractor

lies near the catastrophe surface, as in Fig.3, where the attractor's surface
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of section in the E-B plane is shown with the catastrophe set of UV for the ex-
ample of (4). The tip of the swallow-tail is at B = 2/3, which defines the ca-
tastrophe set of V. These results seem not to depend sensitively on g, provided

that the choice of g is not trivial.

We believe that the system (1) - (3) provides a class of strange attractors
when the oscillation in A engendered by (3) takes the system near the catas-
trophe set of V. A guide to the behavior also seems to involve the superpotential

U. Examples in GFD are discussed in these proceedings by Childress and Pedlosky.

The potential V has m-2 parameters and we have made them all depend on A
We could add more free parameters and in addition to (3) we could introduce m-3
additional equations of this form. A variety of interesting examples may be con-

structed in this way.

Of course, one of the main interests in the present kind of study is the
possible clarification of turbulence that it may provide. To approach this pro-
blem systematically, we wish to extend the highly truncated Fourier analysis of

I and related investigations are based8’9.

the fluid equations on which Lorenz's
We obtain equations like (1) - (3), with additional terms of a form not included
there, but also where X becomes a vector. For this reason, the important gen- ﬂ
eralizations correspond to similar equations with more degrees of freedom. Al-

ready with two degrees of freedom we can study in a given system an illustration
of KAM theory'0 when &€ = 0 and a strange attractor, when £€# 0. How do the two

problems come together? That is a problem we are trying to understand at present.

Is the bearing on turbulence theory of this kind of study more direct than
these vague analogies suggest? To look into this, suppose that at t = 0, X = a.
Consider a swarm of system points with only one system point at each X at t = 0.

Let the initial velocity field be such that orbits do not cross for a nonzero in-

terval of time. The orbit of any system is Xx =X (t‘,a.).

Now X =[0x/0¢) DX/pt = v(t.e)

[+ % ?(-‘.gé
For some time, according to our assumptions, we can solve for a.=ﬁ\U;X)and hence
may write v/t'o_)gv(t,A(t,K))'—‘u.(X,t), Equations (1) - (3) become, with A=A L),

Dw _ du ow oV (9)
Dt - ot *MUpx =-3x —Euu
%%} = gg} + Llé%% 2 - éﬁ?‘ e N (10)

This is a sort of Burgers description of convection - not unlike one contemplated

ad
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many years ago by D.W.Moore - and has many of the features of the usual Burgers
description. It generalizes readily to two or more dimensions. In that case,

it may pay to consider using some modern methods of diffraction theory'l.

Let
a8 o
Wu = e A= = x (1)
Suppose also that
QLk =ak>\+bﬂ) (12)

where (L, and bk are constants. Then we find

-2 k
35S 128 \* o LIR x &,
"aT*"a\ﬁ)“'é/lS*V-‘RZ_lat o (13)

The equation §> is less edifying. But the qualitative impression is that
the complex nature of certain caustics!?2 may have a family relation to the struc-

ture of strange attractors.
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MAGNETOCONVECTION
Nigel 0. Weiss

Discrete ropes of flux seem to be characteristic of magnetic fields in
the sun's convection zone, and these flux ropes should be included in any de-
tailed dynamo model for the solar cycle. As a preliminary, we can study Bous-
senesq convection in the presence of an externally imposed magnetic field.
Numerical integration of the nonlinear equations makes it possible to explore

the dynamical interaction between magnetic flux ropes and convection.

For simplicity let us consider two-dimensional convection with the ve-
locity and the magnetic field confined to the xz-plane and independent of vy,
where the z-axis points upwards. We assume that the boundaries of the region
{o<x<)\d 3 ocz<c1}are stress-free and that the total flux is equal to that
for a uniform vertical field B,. Then a particular configuration is character-
ized by the Reyleigh number R, by the parameter @ = de’/,u;vq , by the Prandtl
numbers p; = ))/x, py = V/rl and by the aspect ratio A (cf. Chandrasekhar 1961,
Weiss 1977). Other useful parameters are pg = )(/7& and Q/p3, {(which, like R,
contains X and V' in the denominator). In all the computations py = 1.

A = 1 except where stated otherwise.

I f Py < | convection sets in as a direct instability, when
R=R®: Rci-zhtG,
where R. = 8'1Tl“ is the critical Rayleigh number in the absence of a magnetic
field. For Q>» p3 >> | (the astrophysically relevant case) convection first
appears as an overstable mode when R:R(‘)'lvﬁiC?/p3 and there is a transition
from oscillatory to direct modes at R = R(”‘“ZT/"‘G/F) Busse (1975) showed that
for p3 >> 1 and Q sufficiently small, finite amplitude steady convection first

appeared when

R = vann = Rc*!‘ 1.0 (Q/Pa%_)”/g.

The nonlinear results for P3 > 1 show finite amplitude oscillations when
R>R™. For | «< O/FJ /> < 100, steady convection appears at the Rayleigh num-
ber predicted by Busse. The field is concentrated into ropes with a Gaussian pro-
file and the horizontal velocity varies linearly across these ropes. When
Q>s p3'/1- the situation changes: motion is excluded from the flux ropes, which

are almost stagnant. The value of Ryjn is close to r(1) and independent of P3
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for p3:>> 1. Within the rope the field is nearly uniform, with a narrow current

sheet separating the flux rope from the convective eddy.

N
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Sketch showing the Nusselt number Ny as a function of R for Q> p3>> 1.
The shaded region shows the peak value of Ny for oscillatory convection.
The unstable steady solution branch from Ryin to R e) s conjectural.
Calculations with R = lOu and different values of Q show that steady
convection in the dynamic regime is possible for p3R < Q < p3]/2R]/3. The
transition from a dynamic to a kinematic (weak field) regime occurs when the
concentrated field is no longer strong enough to exclude the motion from the
flux rope (Galloway, Proctor and Weiss 1978). At higher Rayleigh numbers nar-
rower cells are preferred; for R = 105, square cells broke up into cells with
A=1/2. In the dynamic regime a second solution appears, with most of the flux
concentrated on one side of the convective cell. Symmetrical cells are appa-
rently unstable to perturbations which develop into these lopsided cells, though

the latter transport slightly less heat.

The dynamical importance of flux ropes is clear from these numerical ex-
periments. There are also indications that a few large ropes may be preferred
to many small ones. Galloway and Moore (1978) have obtained similar results for
axisymmetric cells, where flux concentration is much more potent. On the other
hand, nonlinear thermohaline convection (Huppert and Moore, 1977) apparently

shows no analogue of the high Q dynamical regime.
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HYDROMAGNETIC PLANETARY WAVES
Willem V.R. Malkus

The secular variations of the earth's magnetic field appear to be wave-
like processes in an underlying dynamo. Models of the geodynamo suggest that
there is a strong toroidal field (approximately 100 gauss). Here we discuss
several aspects of global hydromagnetic oscillations in rotating systems both

stratified and unstratified.

In an early paper, Malkus (1967), an idealization was found in which all
the modes of a hydromagnetic oscillation of a rotating spheroid could be deter-
mined. By good fortune, the choice of a uniform electric current to define
the basic magnetic field led to a modified Poincaré eigenvalue problem. Due
to the work of Cartan (1922), Roberts and Stewartson (1963 a,b,c) and Greenspan
(1964, 1965), many of the properties of the Poincare problem are understood.
Here several dispersion relations are established determining that in the hy-
dromagnetic case, modes of the system have phase velocities both East to West.
For small rotation rates the lowest non-axisymmetric modes are unstable -- for
rotation rates of geophysical interest all normal modes are stable. It is
found that the zonal phase velocities of fast magneto-hydrodynamic and slow hy-
dromagnetic waves can be of either sign. From the unstable normal modes of
this problem, it was consluded that selective excitation of the observed west-
ward motion may be a consequence of shear or buoyancy instability. More recent
studies by Acheson (1972) confirm that most unstable modes of the large scale
slow hydromagnetic sort do move towards the West. However, an important class
of ''shellular' modes was found (Malkus (1967), Stewartson (1967) to move to the
East. The addition of stratification added a whole new class of interesting
problems including that of magnetic buoyancy. Recent studies by Parker (1977)
and Acheson (1978) discuss the various instabilities of rotating magnetic sys-
tems which could lead to westward phase velocities. Perhaps the most interest-
ing of these has to do with the destabilizing effects of ohmic, thermal and
viscous diffusions. The criteria for these instabilities are derived and

Tabulated.
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MINI-SYMPOSIUM ON MAGNETOHYDRODYNAMICS AND DYNAMO THEORY

Abstracts of Seminars

MAGNETIC PROBING OF EARTH'S LIQUID CORE
Edward R. Benton

Consideration is given to the following question: What can be
inferred, theoretically, about earth's liquid core using measurements of
only the geomagnetic field at earth's surface: We discuss how, in principle,
the following four quantities of interest can be obtained from a primitive
"first order" model of the earth.

(a) Depth or radius of the liquid core (a recent result of Hide)

(b) Depth at which substantial vertical motion and intense electric

current begin to flow

(c) Horizontal fluid motion adjacent to the core-mantle boundary

(d) Rate of increase with depth of the azimuthal field at the surface

of the core;
Consistent with the present state of geomagnetic observations relevant to
this problem, we adopt only a simple model of the earth based on the follow-
ing physical assumptions:

(1) The mantle is a smooth spherical annulus without ellipticity or

topography.

(ii) The mantle is either an insulator or at most a weak spherically

symmetric conductor.

(1ii) On the decade time scale the core fluid moves like an inviscid

Boussinesq liquid of nearly uniform density and perfect con-
ductivity, stirred by radial gravitational forces (thermal,

compositional, or phase-change in origin).

The data needed for practical application to this work (not presently
availabie in adequate form) consist of global measurements of the three-
component vector geomagnetic field of internal origin as seen at earth's
surface for two different epochs separated by a few decades in time. Alter-
natively, use could be made of B and B (secular variation) at a single
epoch but this is regarded as more difficult, observationally, and is also

the harder to utilize.

It is essential for these purposes to devise schemes that fit the
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data not so as to best reproduce field values at specified locations, but
rather inversely to give most accurate locations at which the field takes
on prescribed values (i.e. contour curves of the field need to be accurately
located). The classic (former) problem is linear in the Gauss coefficients,

the latter, highly nonlinear, so interesting developments are to be expected.

The results obtained can also be used to provide new constraints on
secular variation models.
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MAGNETOHYDRODYNAMIC MODELS OF PLANETARY DYNAMOS

Friedrich H. Busse

There are two reasons for the study of the magnetohydrodynamic dynamo
problem in order to understand the origin of planetary magnetism. First,
kinematic dynamo models do not provide sufficient information to isolate a
particular dynamo mechanism. Widely different velocity field can give rise
to the same observed magnetic field. Secondly, the kinematic dynamo problem
does not determine the equilibrium amplitude of the magnetic field which is
the most important parameter of physical interest. Moreover, the systematic
variation of the strength of the magnetic field of different planets provides

the most stringent test for any theory of planetary dynamos.

The analysis of the magnetohydrodynamic dynamo problem is complicated
by numerous nonlinear effects that can occur, some of which are discussed on
the basis of dynamo models of Busse (1973, 1975).

(1) Lenz' rule: The normal effect of the nonlinear Lorentz force is
to alter the velocity field (mainly by decreasing its amplitude)
such that the growth of the magnetic field is terminated and an
equilibrium amplitude is achieved, at least in the time average
sense.

(2) The Lorentz force may enhance dynamo action and equilibrium
amplitudes for the magnetic field may be found for less than the
initial value of the magnetic Reynolds number (Busse, 1977).

(3) When the equilibrium solution is unstable, nonlinear oscillations

can occur. This situation occurs, for example, when the o(-effect
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decreases with increasing magnetic Reynolds number. This property
is caused by flux expulsion from the velocity eddies (Roberts
1972, Busse 1973) and is typical of dynamos with nearly steady
motion.

(4) The Lorentz force may release dynamic constraints, in particular
the constraints of the Coriolis force. It is this effect which is
the basic physical reason for the generation of magnetic fields
in rotating planetary cores. The opinions only differ on the
particular way in which this release is accomplished. Since there
are no dynamo models with strong Lorentz forces available, the
subject is speculative. One such speculation is that an upper
bound on the magnetic field provided by the condition for the
existence of the hydrodynamic branch of convective solutions in

the annulus model (Busse, 1975),

Bafﬂro<%>%
when B, is the field strength in the planetary core, SL , ¥, and
/2 are rotation rate, radius and density of the core. A and
x. are magnetic and thermal diffusivities, and‘/x,is the magnetic
permeability. n is a geometric factor of the order 1/2 and
is the typical wavenumber of the convection columns in the core
based on the radius y_, as length scale. Using a lower bound on &
of the order 10 suggested as a condition for dynamo action by the
numerical experiments of Bullard and Gubbins (1977) the upper
bound (*) appears to give remarkably good fit to the observed
amplitudes of planetary magnetic fields (Busse, 1976).
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A PRELIMINARY REPORT ON PROGRESS IN MODELING THE SOLAR DYNAMO

Peter A. Gilman

For the past several years, we have been developing a numerical model
for a full MHD dynamo in a rotating spherical shell. The motions responsible
for the induction are convective flows, driven by uniform heating at the
bottom of the shell, together with the differential rotation these motions
drive. The motivation for the model is the solar dynamo, although the model

physics is still considerably simpler than the solar case.

Our strategy has been first to develop a model for convection and
differential rotation, which produces surface differential rotation much
like that of the sun, even in quantitative terms. We then study the dynamo
properties of this ''best" solution. The full j x B feed-backs of the induced

field on the flow are included.

Briefly, the model physics is as follows:

1. Boussinesq fluid

2. Linear diffusion of temperature, momentum, and magnetic field

3. Central gravity (l/rz)

4. Stress free top and bottom, constant heat flux bottom, constant
temperature top

5. Perfect electrical conductor bottom, radial magnetic field or
perfect conductor top (no potential field)

6. Shell depth arbitrary

The solution technique is:

1. All dependent variables are expanded in fourier series in
longitude

2. Resulting amplitude functions are solved for on an energy con-
serving, staggered grid in the meridian plane.

3. Leap-frog time differencing is used

4. Pressure is found by solving Poisson type equation from

divergence.
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5. Two components of the induction equation are solved, plus
v -B- 0, with the third used as a check.
6. The calculation is currently started from random numbers in the
temperature field, and in the seed toroidal field.
So far, a small number of limited experiments have been performed, with 13
points in the radial direction, 61 points from pole to pole, and between 2
and 11 wave numbers in longitude (always including wave number 0 for the
axisymmetric flow and field). No symmetries about the equator are assumed,

because we wish to look for any tendency for symmetry selection.

We have most extensively studied the case with Rayleigh number
= 8 x 104, Taylor number = 2 x 105, Prandtl number P = 1 with shell depth
1/3 of the outer radius. For this case we get the following preliminary

results.

1. Dynamo action is sustained for magnetic Prandtl number
PM= nl,/ < 0.25 for 2 modes,n‘/K < 0.2 for 11 modes, so convergence
seems good. These F;A's correspond to internal magnetic Reynolds
numbers in the range 150-200.

2. The feed-backs on the motion are quite large if P, is much below
the critical value. For example, differential rotation energy can
be reduced by a factor of two, before statistical equilibrium is
reached, compared to the same case without magnetic fields.
Approximate equipartition between the field and flow is rather
easily achieved.

3. We do get field reversals, whose period is not sharply regular.

The typical period is shorter than for the sun by a factor of
20-30, for surface differential rotation of the same size as the
sun has. Migration of torodial fields both toward the poles and
equator is seen, so the '"butterfly diagram'" for the model would be
more complex than on the sun.

4. No clear symmetry selection mechanism has been found so far. That
is, symmetric (quadripolar) and antisymmetric (dipolar) magnetic
fields have roughly equal amplitudes, on the average. This is
despite the fact that the motion fields turn out to be strongly

biased towards symmetry about the equator (meaning east-west and

radial motions are symmetric). It is possible that the model has
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to be run longer (at least from random numbers) to establish this
property.

5. For this case, the dynamo appears to be more wor

like, rather
than " o - 20" like, in that the maintenance of the axisymmetric
toroidal field is due primarily to induction by the nonaxisym-
metric convection, rather than due to shearing of the axisymmetric

poloidal field by differential rotation.

Both the short period of the model compared to the sun, and the
dominance of convection rather than differential rotation in maintaining the
toroidal field, may be explained by the fact that the helicity of the con-
vection is two or three orders of magnitude larger than has been previously
assumed in simpler dynamo models in order to get the right solar period. In
other words, convection sufficiently influenced by rotation in the model to
drive the right differential rotation for the sun has much more helicity
than apparently is felt by the solar magnetic field. Reducing the rotational
influence (reduced Taylor number, or increases Rayleigh number) to get the
right magnitude helicity does not work, because the equatorial acceleration
is lost. We doubt that the addition of compressibility to the model will
help, because it would have to destroy most of the helicity of the convec-
tion, while still retaining its Reynolds stresses to maintain the right

differential rotation.

Instead, we suspect that the ability of the solar magnetic fields to
concentrate into tight flux tubes, around which the plasma may flow, is
crucial. The model shows some tendency to do this. That is, we find a
greater fraction of magnetic energy is in the high wave numbers than for the
kinetic energy and the toroidal field is more highly structured than the
differential rotation. Unfortunately, the cost of computing with much
higher resolution makes it very difficult to represent the concentration
mechanism very well. On the sun, perhaps the concentration of the field
into small flux tubes we see at the surface extends throughout the convection
zone, with convective flows, and differential rotation, slipping around the
tubes. This should reduce the net helicity felt. The period of reversal
then may be a nonlinear function of the fraction of the total volume
occupied by flux tubes. The magnitude of the reaction of the field upon the

global flow should also be reduced for flux tubes occupying a small fraction

of the volume.

————————————————
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If these concentration effects are fundamental to the solar case then
a serious problem for the future is how to represent such a small scale pro-
cess accurately in global dynamo models in which the hydrodynamics is

explicitly calculated.

In the light of our results, albeit preliminary, recent “success" by
Yoshimura in modeling the solar cycle and its envelope using effects of
global convection and differential rotation, is probably the result of
fortuitously compensating over-simplifications of the hydrodynamics, induc-
tion, and nonlinear feed-backs, which have resulted in enough free parameters,
when allowed to take mutually inconsistent values, to ''model" almost any

nonlinear system.

TURBULENT DIFFUSION OF MAGNETIC FIELDS
Edgar Knobloch

In studying the turbulent diffusion of magnetic fields, we are
interested in calculating the statistical properties of the magnetic field
B (X , t) in terms of the statistical properties of the turbulent
vglocity field wu ( x , t ). In general this problem leads naturally to non-
linear coupled stochastic differential equations. Here we shall restrict
ourselves to the discussion of the diffusion of passive magnetic fields by a
prescribed (in a statistical sense) incompressible turbulent velocity field
in the high magnetic Reynolds number regime appropriate to the sun. In this
case the problem reduces to the study of the stochastic induction equation,

which may be written in the general form

[£E+L(§.t)]{;(5,t)=o (m

where L ( x ,t ) is a stochastic operator, independent of f . This equation
can be solved for the ensemble average of § , <-F> or f. , by eliminating F'
the fluctuating part of £ , from the equation (Knobloch, 1977). If we assume
that at time € = 0, F‘(O) = 0, or that it is uncorrelated subsequently with
the velocity field, the exact solution can be written as the integro-

differential equation

ExE jauut)up,{jdtu ER)0AL () fu b, OLEREE), @)
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where L = (\_7,l:§ L-C, U, is the Green's operator for the equation

:33;4‘]16 s O,

and A is a projection operator that takes an ensemble average of everything
following it. The subscript 0 on the exponential indicates a time-ordered

exponential. In what follows we shall restrict ourselves to homogeneous

turbulence, and shall therefore assume that <« > = 0. 1In the high Reynolds
number limit the diffusion term in the induction equation may be omitted, so
that now L = 0 and W,= 1. In this case equation (2) may be cast into a
differential equation for ;;, ” -

o =Lg_1 xm} f, (3)
where the operators K, involve m -i integrations over the cumulants of g
For this reason, the result (3) is an expansion in powers of the auto-
correlation time I¥ of the stochastic operator L (Van Kampen 1974, Terwiel
1974). The incorrectly time-ordered terms in the cumulants correct for the
memory effects lost in pulling ; (t') from under the integral signs in

equation (2).

The simplest approximation arises when the autocorrelation time le of
the turbulent velocity field is short. Then the first term on the right

side of (3) dominates, and the approximate equation may be written as

w —
%:U< L’f;t)l_'(:—tde’SHt) (4
o —
The resulting equation for E becomes for isotropic helical turbulence
aé % = = S
2= (x.t) =0 v B (x,1) + 2 VB (x,1) &)

where o0 o0
e Sus()e £).9xu (2, t-T)7d T, '12255\% A u(xt-T)dT. (6
o 0
Here the subscript denotes the coefficient of V , and the superscript the

number of velocities entering in the definition. Equation (5) in the usual
dynamo equation; the first term on the right side represents the ot-effect,
responsible for field amplification by helical turbulence. It represents
the statistical effect of the term B + V & in the induction equation. The
coefficient Vli‘is the turbulent diffusivity,,3 and is positive in this

approximation.

For longer autocorrelation times the result (4) gives rise to the
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expression
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The inclusion of each higher term in the cumulant expansion has two distinct
effects. First, a term with a higher derivative of‘g is introduced; such
terms are negligible when the mean magnetic field is large-scale. Second,
each cumulant adds a contribution to each of the preceding transport
coefficients. As a result the transport coefficients may be said to be

renormalized by the higher order terms:
20 o~
o n
.\:‘_’__vn Y ﬂfz“zl « v * (8)
nz=1 ! n=2
az—c/z >

where 4f is of order ;\ , the Taylor microscale (Knobloch, 1978). In sta-
_ %
tionary turbulence, R :::(u.l,/l.)(uj_/’u) ’,..Rz/”, where L is the eddy

m

Each transport coefficient is an infinite series in powers of R

correlation length ('"typical' eddy size), and the eddy correlation time is
approximately l_/g. for realistic turbulence. Here (¢ is the r.m.s. tur-
bulent velocity and /?L is the turbulent Reynolds number. For fully
developed turbulence the transport coefficients therefore formally diverge,
but their value could be estimated using, for example, Padé approximants.

The condition that the dynamo equation be valid (i.e. that the higher deri-

vative terms are negligible) is Kz a T,k < < | when # is the wavenumber
of B . This condition is equivalent to # << L7' .

The above Eulerian results can be shown to be formally identical with
the Lagrangian results of Moffatt (1974). The divergence of the expressions
(8) is related to the use of a Taylor expansion when converting Lagrangian

variables to Eulerian ones.

Because of the presence of the term'qt'in equation (7), the
diffusion of the magnetic field will differ from that of a scalar field. To
lower order in T. the diffusion of a scalar and magnetic field by non-
helical turbulence is the same. However, for realistic turbulence these
higher order terms may not be neglected, and since both Q:, and 71: (related
to mean square shear and helicity, respectively) provide negative contribu-
tions to the sum, the possibility arises that the turbulent diffusivity of
the mean magnetic field could be negative (Kraichnan, 1976). This may be
related to the steepening of gradients (and the expulsion of flux in the

presence of small molecular resistivity) by eddies with long correlation
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times (Weiss, 1966). On the other hand, for small T; an eddy would have no

time to affect such an expulsion and when it was replaced by an uncorrelated

one, any such tendency would be on average reversed. Such a situation would

correspond to a positive eddy diffusivity, as in equation (6).

For a more complete statistical description of the diffusing magnetic
field, the above method may be adapted to calculating higher moments of the
field. For example, the mean magnetic energy < £3z) is an important quantity,
particularly if 4 is indeed negative.
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NEGATIVE DIFFUSIVITY

Robert H. Kraichnan

In this talk the origin of the negative diffusivity which turbulence
in a conducting fluid can exert on weak magnetic fields when ther are sub-
stantial fluctuations of helicity about a zero mean is reviewed, and some
speculations are given about the persistence of this phenomenon into the

strong-magnetic field regime.

Turbulence exerts a positive diffusivity on a passive scalar field
advected by the motion in consequence of the random walk executed by fluid
elements. More complicated and intuitively surprising things happen when a

magnetic field is frozen in a moving, conducting fluid because the magnetic

field is changed in direction and intensified by stretching as well as dis-

placed.

Following Moffatt, the time derivative of the scalar or magnetic
field, after averaging over ensemble, can be expressed as an infinite expan- |

sion involving ascending space derivatives of the field and ascending
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cumulants of the distribution of fluid-element displacements. This follows
formally from Cauchy's integral solution of the advection equations and
suitable spatial Taylor expansions. For times of evolution such that a
typical fluid element migrates a distarce which is small compared to the
scale of spatial variation of the mean scalar or magnetic field, the expan-
sions are dominated by terms containing only first and second space

derivatives of the mean field.

In the scalar case, these leading terms give
AP ENOE k(UG (2, 1)) =0, K(t)=hdEF)[ ot (1)
where (¢ @(x  t)y is the mean scalar field, §; is the displacement of the

fluid element which arrives at x, T, and for simplicity in writing we take
isotropic turbulence. The displacement is measured from time T = 0, when

the turbulence is switched on. In the magnetic case

_3_3_5___2<:-“ = ()T KB, £) >+ R (E)VEB (x, t)> (2)
where (t ° d ( shops 852
w(t)sdr(t)/dt,  2(t1s <8, 52,

p (€)= K(t)+L 2‘% {(El" 7%)+[7(f)]1},

and 2, is the initial position of the fluid element which arrives at x, Z .

If the turbulence is statistically stationary, I (t)is a positive
constant for times long compared to the turbulence correlation time. o (t)
is zero if there is no helicity and approaches a constant (either sign) if
there is a constant mean helicity everywhere. In the latter case, the final
term fY(t)]t in (3) grows like t* . But an alternative, Eulerian calcula-
tion of q (f), accurate for short enough turbulence correlation time, shows
that q_(t) also approaches a constant, positive value for helical turbu-
lence with simple statistics. It follows that, for helical turbulence,

(g 08 /o0y
becomes negative and grows like —t* for t large compared to the correlation
time. This final fact is the origin of the negative diffusivity for

turbulence with zero mean helicity.

Suppose now that the turbulence has zero mean helicity but that there
are fluctuations of helicity such that the helicity keeps the same sign over
regions which are several correlation lengths of the turbulence in extent

and several correlation times in duration. Since the mean helicity is zero,




r (£ )vanishes. But for times short enough that a typical fluid particle

does not migrate out of the region of helicity fluctuation in which it

starts, the 7
el

da,

term in (3) is nearly unaltered in value from what it would be if the
helicity were uniformly nonzero. Since that term goes negative regardless
of the sign of helicity, so does # (#}. Clearly we can male ¥ /%, as
negative as desired by making the helicity fluctuations sufficiently exten-

sive and persistent.

All the properties inferred above have been verified by computer

simulations, and by analytical model cases (Kraichnan, Parker).

If the magnetic field is strong, how do Lorentz forces affect the
phenomenon of negative diffusivity? In the extreme strong-field case, the
turbulence is replaced by random Alfven waves propagating on the lines of
force. Preliminary analysis suggests that the negative diffusivity pheno-
menon persists, with the typical Alfven period playing the role of effective
turbulence correlation time.
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A NEW THEORY OF THE SOLAR CYCLE*

David Lay:zer

Following Cowling, nearly all modern workers attribute the cyclical
variation of sunspot fields to the quasi-periodic reversal of a submerged
toroidal field, from which the surface fields are assumed to devive through
some kind of hydromagnetic instability. It is also generally agreed that
the toroidal field is generated by differential rotation acting on the
poloidal component of a weak large-scale field. The real difficulty lies in
understanding the origin of the weak poloidal field and the mechanism for
reversal of the toroidal field derived from it. In regenerative-dynamo
theories the poloidal field is derived from the toroidal field itself through

processes in which helical turbulence (or convection) and turbulent diffusion
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play crucial roles. The regenerated poloidal field changes sign every half-
cycle. In the alternative theory sketched in IV, V, the nonconvective
core of the Sun contains an irregular large-scale magnetic field. The
toroidal field is generated by torsional oscillations in a transition layer
between the uniformly rotating, nonconvective, magnetized core and the non-
uniformly rotating, nonmagnetized convective envelope. The submerged field
is the remnant of a much stronger, irregular field that was generated during
the pre-main-sequence phase of solar evolution and mediated the process of

spindown.

In comparing the two hypotheses we may conveniently distinguish three
sorts of questions: those relating to internal consistency and the validity
of specific mathematical or physical assumptions; those concerning the
ability of each hypothesis to provide an adequate framework for interpreting
observations of solar magnetic fields; and those concerning the relation of
each hypothesis to the broader problem of the origin of stellar and inter-

stellar magnetic fields.

Internal consistency. The theoretical cornerstone of regenerative

dynamo theory is the dynamo equation (3.4). Although this equation is valid
for flows with low Reynolds number, we have seen ( § III o ) that the
approximations on which it rests are not valid under conditions prevailing
in the solar atmosphere. Under these conditions the coefficients and

are given either by formally divergent expansions (Knobloch 1978b) or by
oscillatory integrals whose convergence in the limit t- o0 is problematical
(Moffatt 1974). There is no known theoretical or experimental basis for the
assumption (Parker 1971) that the turbulent diffusivity of a passive
magnetic field has a well-defined value comparable to -- or even with the
same sign as -- the turbulent diffusivity of a passive scalar field (&£IIl¢).
Finally, we have argued (& IIId) that turbulent-dynamo theories do not
correctly describe the way in which differential rotation and turbulent
motions jointly act on the magnetic field. Mathematical models of X
dynamos unjustifiably omit terms that describe the interaction between

differential rotation and the fluctuating component of the magnetic field.

The alternative hypothesis (§ & 1IV,V) does not invoke rapid merging
of small-scale magnetic fields. It does postulate (a.) that certain kinds

of large-scale flows occur during a critical period of solar evolution, (&)




that a remnant of the strong, irregular, large-scale, magnetic field S
generated by these motions would have persisted to the present day, and ( ¢)

that a nonuniformly rotating, magnetized layer separates the uniformly J
rotating, convective envelope. These postulates seem to be consistent with

present physical and astronomical knowledge but need to be made more precise [

and secure by detailed studies.

Interpretation of observed solar magnetic fields. The dynamo theory

evolved during a period when observational evidence seemed to indicate that
the Sun has a weak poloidal field that reverses quasi-periodically. At
present there is no direct observational ecvidence for the existence of such

a physical field. Leighton (1964) has argued that an average poloidal field

L e— | S—

results from the breakup of sunspot fields and random horizontal motions of

their components. But there are no known theoretical or observational ‘I
reasons (apart from the requirements of the dynamo theory) for asserting )
that the residual sunspot fields merge to form a large-scale field, rather :
than remaining fragmented throughout their decay (Stenflo 1976). Finally,

the absence or near absence of sunspots during extended periods (Eddy 1976)

presents a serious and as yet unmet challenge to turbulent-dynamo theories.

The normal modes of a regenerative dynamo are exponential. While it is easy

to understand how the amplitude of an exponentially growing mode can be

limited by nonlinear effects, there is no obvious reason why an exponentially
decaying mode should not disappear altogether. Leighton's (1969) numerical

simulations suggest that this is indeed what happens to such a mode.

The alternative theory relates the variability of the solar cycle to
the variable rate at which magnetic flux in the radiative core penetrates
the convective envelope. The observed correlation between the rise-time of
the sunspot number and the total sunspot number in a given half-cycle is
explained by the fact both quantities increase monotonically with the thick-

ness Ar of the transition layer.

Solar and stellar magnetic fields. The dynamo theory does not

explain the origin of a large-scale solar magnetic field; it postulates that
a large-scale field was present in the material from which the Sun formed.
The only known process for the spontaneous generation of large-scale magnetic

fields under astronomically relevant physical conditions is Biermann's

mechanism, which operates in any differentially rotating, partially ionized
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gas-cloud.

Thus large-scale magnetic fields may be expected to develop
spontaneously in gaseous protostars as well as in larger self-gravitating
gas-clouds which spin up as they contract. Soon after the Biermann field

has begun to grow in a contracting gas-cloud, it will be amplified by fluid
motions ( § 1IV). The resulting complex fields mediate the transfer and loss

of angular momentum, enabling protostars to contract to stellar dimensions.

The subsequent evolution of the magnetic field depends on the extent
and disposition of convective regions in the star. In stars with convective
envelopes, the convection zone tends to exclude the submerged field, but
also interacts with it in a more or less narrow transition layer. We suggest,
as a working hypothesis, that this coupling between the submerged magnetic
field and the overlying convective envelope has two observable effects:

(1) It mediates the outward transfer (and eventual loss) of angular momen-
tum. (2) It gives rise to torsional oscillations of the transition layer

which produce strong toroidal fields.

In stars whose outer convection zone is weak or absent the submerged
field will penetrate the visible layers. We suggest that the fields of
magnetic A stars may be interpreted in this way. A complete theory along
these lines would, of course, need to explain other conspicuous properties
of the magnetic A stars -- in particular, their slow rotation. These and
related questions lie outside the scope of the present discussion. The
existence of stars with large-scale but distinctly irregular magnetic fields
does however bear directly on the present theory, which predicts that such
a field is present in the Sun's nonconvective core.

*From a paper submitted to the Astrophysical Journal. References in
the text are to this paper.

SPECULATIONS ON THE THERMAL STATE OF THE CORE
David E. Loper

It is argued that the most plausible source of power for the geodynamo
is gravitational energy released by the growth of the solid inner core.
Results of model calculations by Loper (1978a) show that the power available
to drive the dynamo by this mechanism is linearly related to the density
jump at the inner-outer core boundary and can be as large as 1.25 x 1012 if

Ap = 2.63 x 103kg/m3. This can sustain a toroidal field as large as 103,
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gauss.

The thermal regimes of the outer core which are possible if the
dynamo is gravitationally powered are studied. The regimes are defined by
the ordering of the magnitudes of the gradients of the adiabat 1}&/, the
liquidus Tﬁ and the conduction temperature 1}; . It is argued that regimes
T < 7;‘ < TE' and 71d -~ TE‘ éFTK are not possible since they result in
a solid outer core. The regime for which 1’3" ¢ 71:/ <1 is the simplest
and possesses no unusual features. The second regime with 7}¥ < ﬁ’: = ]15,
is similar to the first except that a slurry layer must occur at the bottom
of the outer core. The thermodynamics of such a slurry have been studied by
Loper and Roberts (1978). In each of these regimes the fluid is both ther-
mally and compositionally unstable. This is in contrast to the third regime,
TE‘ Z TZ& L‘TE , in which thermal gradients tend to stabilize the fluid.
However, it assumed that overturning is driven by the stronger compositional
buoyancy. This introduces the possibility that heat may be transported
radially inward by the convection driven by compositional buoyancy.
Consequently there is no direct relation between the rate that heat is con-
ducted outward in the outer mantle and the rate of heat transfer to the
mantle. The fourth regime, 'l'c’ = 7}; —’Y; , allows compositionally driven
convection provided the thermal conductivity is sufficiently large that
'Ri < 71’ < T\J < 'FA' where T is the actual temperature gradient.

This possibility appears to have been overlooked by Higgins and Kennedy
(1971). It is argued that a slurry in the bulk of the outer core as
envisaged by Busse (1972) and Malkus (1973) is incompatible with overturning
because transport processes produce both thermal and compositional gradients

which tend to stabilize the fluid.

The possibility that the core fluid may be less metallic than the
eutectic as Braginsky (1963) suggested is considered and it is shown that a
layer of variable composition must form at the bottom of the outer core.
Difficulties associated with the removal of heat from this layer leads to
the conclusion that a metal-poor composition for the core is unlikely. The
thermal evolution of the earth is discussed and it is noted that if'Th/<1ﬂ’,
the heat transfer problems for the core and mantle are decoupled with con-
ditions in the core leading to a prescribed temperature at the base of the

mantle and the mantle in turn prescribing the heat flux which must emanate
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< X ; q‘ ‘. ! e sy st .
from the core. 1t is found that if /q = 'Tl) , a significant flux of heat
may flow from the core to the mantle with virtually no change in temperature.
For detailed discussions of these ideas see Loper (1978b).
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ELECTROHYDRODYNAMICS AND MAGNETOHYDRODYNAMICS

James R. Melcher

Beginning with a brief review of the contrasts between electroquasi-
static and magnetoquasistatic approximations, and between the electric and
magnetic force densities, a pair of case studies are developed that illustrate
analogies between phenomena in the two areas. Von Quincke's rotor consists
of an insulating cylindrical rotor having radius b and permittivity Ey
immersed in a liquid having permittivity £ and ohmic conductivity &

Plane electrodes on either side of the rotor in the liquid impose an electric
field E ( t) that is uniform far from the cylinder and directed perpendicular
to the axis of rotation. The equations of motion, which are useful in under-

standing convection in many electrohydrodynamics systems, have a form which

in the limit f3 (Eb‘ Sq)/(£b+ €a) — 0 are the same as for a-b-c convection.
A e
it =tpy
Brap 4P = HEQ

B -nPrP sfHIEQ
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Here, SY is the rotor angular velocity and P, and F} are proportional to the
polarizations per unit length in the X and Y directions. Variables are
normalized so that

tetTe = (E,+ eb)/d

E(b= E(8) /P

n-0T;e, - 2t g

(5) B G)

Analogous to the Rayleigh number is the square of the electric Hartmann
number, H, (the square root of the ratio of the charge relaxation time T, to
an electroviscous time) while the role of the Prandtl number is played by

(the ratio of the charge relaxation time to a viscous diffusion time).

HG: ?_EQZB_E% 5 ;Pe= t’e/(I/B)

Here, I and B are respectively the rotor moment of inertia per unit length

and viscous damping coefficient per unit length. If I is the rotor inertia

alone. I: 7bY P/Z. while (for complete viscous diffusion in a liquid

extending to infinity), B= 47 b° n where h and p are viscosity and mass

density respectively. Thus, H;E Te/TE’v 5 rEVE 2-(\/5&5' Lar.:’. pe;‘t'e/t'v;
Ty e pbf?’Bq .

There are familiar magnetohydrodynamic phenomena having features in
common with this rotor model. A limiting form of one of these is discussed
to motivate a continuum model for instabilities observed in liquid metals as
they are shaped or levitated by high frequency alternating magnetic fields.
The rotor model consists of a conducting shell with an imposed high frequency
magnetic field that is uniform far from the cylinder. Incipience of
instability is governed by a parameter M = B:,/,uonw( B, and w the peak mag-
netic flux density of the applied field and its angular frequency respec-
tively) which is the reciprocal of the magnetoviscous time-frequency product.
It is found from a continuum theory based on magnetic stresses averaged on
the time scale LQ@ that a planar liquid layer supporting a uniform skin
current and peak surface magnetic pressure B://“o , is unstable for M>67 .
Thermal convection terms are added to the rotor model to motivate explana-
tions of why the predicted incipience of instability correlates with

experiments, but the growth rate predicted by the theory is far longer than
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that observed.

A natural electrohydrodynamic dynamo is the thunderstorm. The film
"Electric Fields and Moving Media'" is used to show electrohydrodynamic
dynamos involving falling water drops. These are the "Kelvin Dripper" and

L the Euerle 3-phase dynamo.

THE OXYMORONIC ROLE OF MOLECULAR DIFFUSIVITY IN THE DYNAMO PROCESS
H. Keith Moffatt

The delicate question concerning the behavior of the regeneration
coefficient o and the turbulent diffusivity/G in the limit of vanishing
molecular diffusivity (iz——;CJ) in helical turbulence is discussed, in the
light of an exact result of Bondi § Gold (1950) viz. that when }?lethe

external dipole moment of a current distribution in a sphere is permanently
bounded.

i The oxymoron is a figure of speech which embodies an apparent con-.
tradiction; e.g. creative destruction, relaxed tension, devastating
triviality, etc. The oxymoronic role of molecular diffusivity O(=§u,¢f‘}
is this: that while non-zero diffusivity ( 7 >0 ) is directly responsible
for the natural ohmic processes of dissipation and decay, it is also
indirectly responsible for the means of regeneration of the magnetic field;
the dynamo process may be described as a process of 'regenerative decay' or

perhaps better 'reinvigorating dissipation'.
2. Consider the dipole moment,éf(t) associated with a current distribu-
tion i (g_c. t) = /u.;’ 2 g in a conducting sphere V .rggq . This is

given by various alternative expressions:

#iu (e, XajdV 23], Bodv=3(%X (8 n)dS, @)
where J is the surface Y= a ; and its rate of change is given by
;9_1’1__2’&-]_3_5_ N 5 2
e B i js("l"g’d‘s‘ ;
With E =-4,B +n V. B ,and &« .n=0wm 5, this gives
97 du , NENE 3
2L —ﬁ-iglg BldS-n fra (WBldS, (3)

The first term on the right describes the mechanism identified by Bondi &
Gold (1950) for increase of the dipole moment; field sweeping towards the

magnetic poles (defined by the instantaneous direction of the vector 44 )
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can increase ’}L} , but, as emphasised by Bondi & Gold, this mechanism is
strictly limited when r = & , since {/AI then attains a finite maximum

when all the flux of ;ﬁ is concentrated at opposite ends of a diameter of
the sphere (as in an elementary bar magnet). To see this explicitly from

the above equations, let 5~+ denote those parts of S on which n ‘B > or

-~ 7, respectively, and let
3

Ax= g ), %(n-B)dS (4)
so that 4 Ay R AL We then Lave
u e e & s FFad )
where
?ﬂ;‘:w@i“ == (n-8)dS. (6)

Now, when n =0, @ is constant, since flux through every closed material

circuit is conserved, and so

o] s [Me|rluc| 2 TR do 7
i | i i {
the maximum being attained only when the flux is entirely concentrated at

the poles, as mentioned above.

3. There can therefore be no doubt that, when Q': O , exponential
increase of the dipole moment is impossible, no matter what the complexity
(laminar or turbulent) of the velocity field in vV may be. The situation is

transformed if 9 > O , because then diffusive increase in the dipole moment

(represented by the second term of (3) is possible, provided the velocity
field is such as to maintain a field with a suitably negative gradient near

the boundary Y = a .

4. The impossibility of sustained dynamo action (in the sense of an
exponentially increasing external dipole moment) applies equally to such
basic systems as the homopolar disc dynamo. If the disc conductivity is
infinite, then the magnetic flux across it cannot change with time, and
exponential growth of the magnetic field associated with the device is
impossible no matter how fast we rotate the disc or how ingeniously we twist
the wire, and whatever conventional wisdom may tell us to the contrary. In
terms of growth rate, if, in general, g oK ept , then P must depend on the
disc Reynolds number in the manner indicated in Fig. 1. It is reasonable

to conjecture that fluid dynamos also must behave in this manner.
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Fig. 1. Possible dependence of P on ﬁmfor homopolar disc dynamo.
(a) wire resistance zero; (b) wire resistance non-zero.

In either case, P =3 0 as Rp— oco.

S Consider now the situation in mean-field electrodynamics, in which,

in convectional notation,
€€=<%"é>i=dij B°3+ﬁfjké80j/axk* cee (8)
where Q,, (x, t) = ¢PB (x-%) > 1is the large-scale (mean) field, and
b= B - B, . Under first-order smoothing theory (Moffatt 1978 -

hereafter referred to as M - chap. 7) we have the results

o= oty == g ([ KEES did e, ©)

oty st‘!

R'E klw)
23+ g P = & 0[] Bl dkd w, (10)

where F Uﬂ, w), F (h‘w) are the helicity and energy spectrum functions
of the random w -field. If

F(k,w) = o(wh), £ (xw)=0(w) et w—0, (11)
then clearly

0(/\1‘)( 7 /3~ ﬂrzm n—0, (12)
where ¢, and [, are in general non-zero constants Cﬂ >0} . This is
clearly the situation when the u -field is a field of random waves with no
zero-frequency ingredients. In this case, the regenerative process normally
associated with the pseudo-scalar X vanishes as PZ —> 0, consistent with
the remarks of §1. It may be noted that the theory of Braginskii
(M. chap. 8) gives an expression for the regenerative coefficient very

similar to (9), and again with the property o = 0(')) as N —0.

6. Difficulties arise however if the w -field has non-zero spectral

density at w = O, as is the case for conventional turbulence. The zero-
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frequency ingredients of the turbulence are precisely those that are
responsible for the dispersion of particles in a turbulent flow, and they
are of vital importance also in the field-line - stretching context. It
must be noted however that results such as (gf > ~ 2D+t for the relative 14
dispersion of two particles separated by vector distance £ (¢)is ultimately )
limited by the physical dimensions of the fluid domain; ang care may then be

needed in carrying over asymptotic results from strictly homogeneous

turbulence to turbulence in a finite domain, particularly when these results

are sensitive to the limiting ( € —> ©©) behavior.

7 When v = O, there is an alternative approach to the determination
of the coefficient &< and ﬂ using Lagrangian averages. If at some instant
t =0 , the w and é fields are uncorrelated, then o£ and /G are

functions of t (which clearly vanish at t =0 ). The Lagrangian proc.dure

(M. & 7.10) leads to the expressions
(<
B bz
d(tj~‘—§-é(<1[(t)°vg_.“1[(t))dT) (13)

t t
B4 [ Cylt) y(T)rdTe [ (8 (DAT,

t
@Yy (- ) Ry VY (C0r dTd T
oo

where ¥ (¢ is the velocity of the fluid particle initially at position a .
The difficulty here is to determine how these expressions behave for a
typical field of homogeneous turbulence as € — oo . Kraichnan (1976 a, b)
has argued that, in the case of turbulence with non-zero helicity,

% (E) o, F(t)~fBo arn t— o0, (15)

the apparent positive divergence in the second term of (14) being cancelled
by an equal negative divergence in the third term (which involves the awk-
ward triple Lagrangian correlations). Kraichnan's arguments rest in part on
comparison with the results of first-order smoothing theory in situations
where both approaches (first-order smoothing and Lagrangian) may be expected
to be valid, and in part on numerical evaluation of c<(f)and‘[?(f)for
velocity fields with prescribed Eulerian statistics. Further numerical
experimentation is needed however, before the results (15) can be regarded

as absolutely and definitively established. Let us nevertheless accept (15),

and pursue the consequences in the context of o* and & w -dynamo models.
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-
8. For an oC -dynamo in a sphere ¥ < @ (M. chap. 9), the growth rates
have the form 7
¥ e

o —f (R (16)
where 723 = 'Z-i-ﬁ ,and

Rz [*]a%/n ¢ (17)

and dynamo action occurs when F(R,J)O . This generally occurs for the
simplest mode of dipole symmetry when

192 Race s (18)
where Ro(cis a positive number of order unity which depends on the precise
assumption made about any large-scale variation of & throughout the sphere.

Let us suppose that, as — 0, the relevant behavior of &« and (cf. 15)
PP

is
X~ck,, B~ /3, aa N O (19)
Then (16) becomes !
= ~ bl a*
PN f"-; F(Ro();Ro( = !ﬂ s (20)

The condition R“ * Re“_ is certainly satisfied if a is large enough,
and then p tends to a strictly positive value as Yl-—vO , implying exponen-
tial increase of the mean field, and in particular of the extermal dipole

moment. This appears to be in fundamental conflict with the Bondi § Gold

result (7), which applies when Y] =0 whatever the complications of the

velocity field, and whether laminar or turbulent.

The conflict does not arise under the alternative limiting behavior

(12). In this case,

NU+A) 1) ?
p~ TF(V)_-)OMQ*’O (21)

and the dipole moment does not grow exponentially in the limit N —0

9. For dynamos of « ew -type, growth rates are generally given by

= —e F e ¥
Qt 2 Vl :
where G is a measure of the shear associated with differential rotation.

The condition for dynamo action is now of the form

K> Re o (23)




T —

= JU =

where X, is model-dependent, but generally of order unity. Again under
the behavior (19), as N -—»0,

X— X = |o«,[Cayﬂ: ) (24)
and /3, o A
pre aoz- 'F(X)>O “f X >X,, (25)

and we encounter the same fundamental conflict with the Bondi § Gold result.

Under the alternative behavior (12),

g (4B o 1lGa’
P '2. atr F 7(1‘ﬁ;)"

(26)

To determine the behavior of P as — 0 , we need to know the behavior
of F(X)as X— eo . If F(x)= o(X)as X —>oe , then p—o
as Q —>» 0, and conflict with Bondi & Gold is avoided. The asymptotic
behavior of F (X) as X — oo does not appear to have been investigated
for « w -dynamos in a spherical geometry. A clue is however provided by the
results for an otw -dynamo in a Cartesian geometry (modelling the galactic
disc). For this case, which can be solved completely (M. & 9.9),
F()()prjx as X — oo, (27)

and so p-—>0 as 4§ —>0 as required.

10. It is hard to escape the conclusion that the result (19) cannot be
correct, or that, if it is correct in homogeneous turbulence, it is, for
some deep reason, not applicable when the turbulence is confined to a finite
region (see the remarks of é 6).
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A FLUX-LINE METHOD FOR NUMERICAL STUDIES OF KINEMATIC DYNAMOS

Peter Olson

The sprectrum of the geomagnetic field and its rapid secular varia-
tion suggests that large magnetic Reynolds number conditions exist in the
earth's core. ( Rm= 47cvL, o = conductivity, U and L are
velocity and length scales). However, there exists at present no acceptable

method for solving the induction equation under these conditions.

A method useful at large Rmis developed and applied to some likely
flows. A new feature is the use of random walks to simulate the diffusion
of magnetic field due finite electrical conductivity. The method is based
on a solution to the vorticity equation proposed by Chorin (1973). Given

the induction equation

zaaT@:V"(‘-’"B)* /R V"B (1)

in which § (%, t = 0) and ’l_{(‘;”’c) are specified; the solution B at

some later time t 1is required.

First, the initial data [_3_ ()s’o) is partitioned into a number of
slender flux ropes, idealized as curves locally parallel to the field, the
density of curves proportional to the field's in.tensity. These curves are
then represented by a number of sample poipts i‘ along their length, the
distance between adjace_nt sample points 'LL, , and the average field inten-

sity between points B*

At each time step, 8 t, the sample points are advanced according to

teot ) ; ~ A
X (E+0t)=x(t)+ { Vx,tholt' + IN(0,28t/Rm) + bN(0.24t/Rm) (2)
t
where AN is a normally distributed random variable with zero mean and
N N
standard derivation Qé)t , and L and b are unit vectors along the
m

curve's principal normal and binormal.

The field intensity between each point is then recomputed using

. 3 i
1 i
B'(t+At) = B'(t) _1_%*(_‘:;2 (3)
The first term on the right hand side of (2) solves %—%— = Vx (UX B) while
B > . .
the second and third terms in (2) solve %—- = I/Rm v R by exploiting

the formal connection between random walks and diffusion from a line source.

Because of the random component in (2), the value of B at a point becomes
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uncertain; however, dynamo calculations usually require knowledge of global

functionals only, such as spherical harmonic coefficients.

The alogrithm defined by (2) and (3) applied to a large number of
curves permits these average quantities to be computed as a function of

time, to within a statistical error. The difficulties associated with

finite difference representations of the Laplace operator are avoided, and
in addition the sample points tend to accumulate in those regions where the

greatest computational effort is needed.

As an application, induction by the nearly-geostrophic flow proposed
by Busse (1975) is studied. This flow is characterized by a primary geo-
strophic circulation about columns erected parallel to the rotation axis,
with Ekman suction providing flow along the columns and with it a non-zero
helicity. The domain is taken to be an isolated conducting sphere in which
eight columns (4 pairs) are arranged in a ring centered about the axis. The

initial field is an axial dipole.

With no helicity, the dipole field decreases with time for all
investigated ( Rm= 100 to 1000, based on the sphere radius). The mean
field in the core of each column decreased rapidly toward zero, a result

which may be interpreted as 'flux expulsion.'

With helicity, growing fields occured for Rm 2 250, although the
computations have yet to be carried out sufficiently far in time to show
true exponential behavior.
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MAGNETOCONVECTION AT HIGH MAGNETIC REYNOLDS NUMBER

Michael R. E. Proctor

This paper investigates steady finite amplitude solutions of the
equations of a Bussinesq fluid heated uniformly from below in the presence
of an imposed vertical magnetic field. Several previous studies have con-
centrated on the linear stability problem (Chandrasekhar 1961, Danielson
1961), in which all quantities are only slightly perturbed from the basic
state. Thus the magnetic Reynolds number Rm = UL/rl is small, where U and
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L are velocity and length scales and FZ is the magnetic field is pushed
in to flux ropes and sheets as the convection becomes more vigorous and
becomes large (Weiss, 1966). The dynamical effect of this intermittent
flux structure is then quite different from the small case in particular,
the dynamical effect of two-dimensional flux sheets is quite different from
that of axisymmetric ropes, although the linearised problem is independent
of the convection planform. Busse (1975) has investigated the two-
dimensional problem when the total flux threading the system (measured by

Q = B. L"/(/xf '05 where Bois the mean vertical field, 4« the per-
meability and o and vV the density and kinematic viscosity) is small. He
finds that finite amplitude convection can occur for values of the Rayleigh
number F((measuring the temperature difference across the layer) much less
than that necessary for linear instability. Proctor and Galloway (1978)
have investigated the analogous problem in an axisymmetric geometry. The
analysis is simplified considerably compared to the two-dimensional case,
chiefly due to the fact that the axisymmetric flux rope that forms only
exerts a very localised dynamical effect. The analysis can be performed for
all C? for which the flux rope remains thin. This gives a limit of order

R yy,/‘(n R,or &, which is not severe. The methods used are those of
Galloway, Proctor, and Weiss (1978) (see also Proctor, these notes). The
results have some rather unusual features. In particular, the finite

amplitude solution is supercritical for very small @ , but becomes sub-

critical for all sufficiently large @ ! It is also interesting that K is
close to FZc , the value for a set of instability in the absence of a magnetic
field, even for large values of () . The results suggest that there ms- be

a region of steady finite amplitude behaviour even when linear they would
suggest that instability would appear as oscillations; although no firm con-
clusions can be drawn within the confines of the analysis.
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A VON KARMAN DISK DYNAMO
Kay A. Robbins

The homopolar disk dynamo with shunt exhibits nonperiodic reversals
which resemble those of the earth's field. In this model the distortion of
an initial poloidal field by the moving disk gives rise to a toroidal field
(7). The poloidal field is reinforced by an equivalent alpha effect supplied
by a shunt resistance. As the fields grow the Lorentz force slows the disk,
and the fields decay when ohmic dissipation dominates the driving forces.

The Lorentz force then decreases, the disk speeds up and the fields grow.

Reversals occur when the toroidal and poloidal fields are out of phase.

Studies of disk dynamos are suggestive, but cannot determine whether
this mechanism is responsible for oscillations and reversals in fluid
dynamos. This abstract describes some initial efforts in modeling this
phenomenon in a fluid dynamo. A major difficulty is the dominance of Coriolis
and Lorentz forces over inertial forces. Consider an infinite conducting
disk of thickness.z which is in contact with a conducting fluid (figure 1).
The disk is free to rotate under a local applied torque Z;'Tr”. The motion
of the disk is opposed by the Lorentz force due to the currents in the disk.
Viscous stresses may also be added. A mechanism for oscillation similar to
that of the disk dynamo is thus provided (figure 2). Let the magnetic field
in the fluid, 1_3 =Ta T +rb @ + cé and the velocity w = ru 1£+rv37+w$
where a, b, ¢, u, v, w, depend on z. v 5 & . % are unit vectorf in a
cylindrical coordinate system. Similarly in the disk Bz r¥f r ¥r9 P hz.

The equations can then be written
Ugzvieng ~ut - wug + [azc-2 b’]/(p,u_) + VUzg
ve = - Lauvewyv )+ [abecb, )/ (pu) s VVo g
at=~Ewa—u.c+aLb]_‘+ Nagq
b, = cvz-whb,+ (o{a)l_ + Nbya

¢, * ~2a Wz = -2

where an alpha effect, o, has been assumed to provide poloidal field

regeneration. Subscripts are used to denote partial differentiation.
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In the disk 0

N =T 7—"— )g (hg,-gh;)d=, 3t=231z’ hg=ah,;, haz-2f,

. is the angular velocity of the disk and f2,is the rotation rate of the
fluid at infinity. 9 is the fluid viscosity. A and 4 are the magnetic

diffusivities of the fluid and disk respectively.

At the disk fluid interface:

u:»v:D,v=ﬂ,a=$)b=j,C:h,&43= Th, Ebz: 085"
At the disk-insulator interface: £ =g =0. At infinityuza=b=0 ,
V = £, . The insulating boundary conditions at infinity have been chosen

to insure that all dynamics occur near the disk.

Linear Steady State

Following Loper (5) we can write:
D=2, (1teg), v= au(uz’v),w:swn,(v/no\‘“, u=ze,Uu
a-¢tB (v.Q )“,uo-a b-¢B, (vn.\v‘ ob, ¢c= B+ & Bo vuae
F=eB.(va) uck, g3 eB, (v “uog, h:By+ £B, vuch
2=(v/a)" =25, n:(8 r)/(sz T=eTo%, +20)¢,

b <L (n, "5, = BE (/%) Ypuec = (w2, Vour

If prime and dot denote differentiation with respect to and respectively,
then to zeroth order in € :
P'v2nQ’+ 2iP=0
P -tad + @ =0
R=0
where
P= u-i(v , Q =a-ib, R= - [9 and & is assumed to be constant.

For small & the solutions are

. T, W -a,6
Bath B —-M',ze St e™
{

Ga= [¢ i, l"]/[' ;] 9o [I ,,+G X [nfﬁ] +l[~n4m]y'
" o i+m/Cre .

,R=-iaa(a+lj, 2“/’T¢|30’

Thus for each T and each value of the disk velocity, a steady state value of

B, 1is determined. For a unique steady solution a nonlinear balance similar
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to that given for the outer solution of Chawla (3) or Loper (6) must be
assumed. The appearance of two rates of exponential decay in the magnetic
field indicates a two layer structure to the solution. When & — 0 the second
term in the @ expression approaches a constant. Then ¢ =2Re1j°0.d C}-VO(C)
as T — oo, This also indicates that there is an outer layelswhich provides
a transition between the Ekman-Hartmann layer and the inviscid, current-free
fluid at oo . This outer nonlinear layer is the magnetic diffusion region
(MDR) discussed in (1, 2, 4). A more complete description of the possible
steady states and the important question of whether or not such a model can
exhibit reversals will be addressed in future studies. The model is kine-
matic in the sense that the alpha effect is specified rather than derived
from dynamical considerations. To complete the connection between the
idealized model and the geodynamo, a plausible poloidal regeneration mech-
anism, such as that furnished by an underlying small scale turbulent velocity

field, is needed.

Vertical
Field

Lr AR
B =

= conductivity of fluid Fic.2
= conductivity of disk

Fic. 1

g
o
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DIFFUSIVE INSTABILITIES IN MAGNETO-CONVECTION |
Paul H. Roberts |

It is now well established that even a uniform magnetic field can
facilitate thermal convection in a rapidly-rotating fluid. A non-uniform
field can, however, introduce a new class of 'magnetic instabilities' which
are driven by curvature of the field lines, variation in magnetic intensity,
or both. It is of interest to study the interrelation between such magnetic

modes and the better understood 'convective instabilities'.

If diffusion effects are ignored a sufficient condition for convective
instability is that R"—'—?CI‘X DT/"’IAZ
attain some 0(1) value. Here 3 is the acceleration due to gravity, A is 3
the Alfvén velocity, « the coefficient of volume expansion, A 7] the tem-
perature contrast, and d the length-scale. Once diffusive effects are
added, the criterion is changed to K = 0(1) where

{}?_:ado(AT/Q.Q X,
Sy is the angular velocity and Y the thermal diffusivity which we suppose
small compared with n the magnetic diffusivity. (Viscosity is ignored

except in thin boundary layers.) When Al/.'].S'Z)( >» ] , as is for example true

in the Earth's core, R,<< A and convection occurs first through the action

of diffusion. If AT is fixed, the A minimuzing the critical value, ac s
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of ® at which convection first occurs is characterized by £=0(/),

where oy VlQ n

is the Elsasser number.

For simplicity, magnetic instabilities are usually studied in the
absence of buoyancy forces, and typically in the context of the westward
drift of the main geomagnetic field. If diffusion effects are ignored a
sufficient condition for magnetic instability is that

L =(Al20d)*
attains some 0(1) value. Once diffusive effects are added, this criterion
may be changed to €& =0 (l), as recent work by Roberts and Loper (1978)
shows. When ?{/211 JICJ‘ I, as is for example true in the Earth's core,
i?<< £ and magnetic instability occurs first through the action of

diffusion.

A particularly interesting example is Malkus' (1967) model as genera-
lized by Eltayeb and Kumar (1977). A uniform current flows through a con-
ducting sphere of radius d parallel to the axis 0, of rotation, so that the
magnetic field B is zonal and proportional to distance s from 0,; to provide
buoyancy, a gravitational field directed towards, and proportional to dis-
tance r from, 0 is added together with a uniform distribution of heat
sources, 0 being the centre of the sphere. Quantities such as Rl, A, £,

4 are computed using equatorial values of g, A and temperature gradient
45{}3. Roberts and Loper (1978) found that, although no purely magnetic
instabilities occurred, magnetic instability could be promoted by the addi-
tion of a bottom-heavy density distribution, i.e. by making (R negative.
Very recent numerical results by Fearn (to appear in 1979) exhibit this and
are shown on the following figure, in which m is the preferred zonal wave-
number. His results strongly resemble those of Soward's (1978) plane layer,
curved field line, model. The physical explanation of the paradoxical role

of buoyancy on the magnetic mode is still lacking.

5
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NONLINEAR ASPECTS OF CONVECTION WITH STRONG MAGNETIC FIELDS

Andrew M. Soward

An electrically conducting Boussinesq fluid, conductivity g— , kine-
matic viscosity 7 , density p is confined between two horizontal planes
distance d.apart. The fluid is permeated by a strong uniform horizontal
magnetic field 430 and the entire system rotates rapidly about a vertical
axis with angular velocity L . The fluid is heated from below and cooled
from above so that in the absence of motion there is an adverse temperature
/3 across the layer. The boundaries are rigid and perfect conductors of
both heat and electricity. Attention is restricted to small values of the
Ekman number E and the ratio ﬁ’of the thermal and magnetic diffusivities X
and 7 respectively;

E:V/ﬂalz<<l ) %’H/’Z<</-
In this parameter range marginal convection is steady and its character
depends upon the relative sizes of the Coriolis and Lorentz forces, which
is measured by o Jl/o* B:-
For order one values of A , the critical Rayleigh number is large,
specifically y/ =i
R:gdﬁL/)})‘(=O(E))
where 9 is the acceleration due to gravity and o< is the coefficient of
expansion. When A > 2/\/"’ , motion consists of a single roll, whose axis

is perpendicular to the applied magnetic field. On the other hand, when

A % 1///" , two distinct rolls are possible: the axis of each roll lies

oblique but makes an equal angle to the applied magnetic field. Only the

latter case is discussed here.

The above linear results are well known (see Eltayeb (1972), Roberts
and Stewartson (1972)). For the particular case of slippery boundaries, the
stability of a set of oblique rolls to perturbations of the other set has
also been considered by Roberts and Stewartson (1975). When ﬁ'<'< ) , they
found that both sets of rolls are unstable in the approximate range

10796 > X » 2//7,
The objective of the present analysis is to clarify the nature of the
instability by considering the case of rigid boundaries. Though the con-

vection rolls themselves are largely uneffected by this modification, any

e
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geostrophic flow alighed with the applied magnetic field, which was pre-
i viously arbitrary, is now damped by Ekman suction. The latter effect is

central to our treatment of the finite amplitude stability problem.

As the Rayleigh number is increased above its critical value, only
one of the two sets of single rolls remains stable. The amplitude of the
stable rolls increase with R until a second critical Rayleigh number is
reached at which the system becomes unstable to unidirectional geostrophic
flow. Whether the instability sets in as a steady or oscillatory shear flow
depends on the importance of damping by Ekman suction. (Note that, as a
result of approximations based upon small i , Alfven waves have been
filtered out). In either case, the roll amplitude remains largely unaltered
to further increase in the Rayleigh number with the consequence that the
geostrophic flow is stabilised. On the other hand, the amplitude of the
shear flow increases with R in a way which ensures the stability of the
convection rolls. For the particular case of a steady geostrophic flow, a
third critical value of R is isolated at which this shear becomes overstable
to small amplitude perturbations.
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THE STRUCTURE AND STABILITY OF VORTEX FILAMENTS
Sheila E. Widnall

Some models for the structure of a vortex filament are reviewed.
Several physical processes that result in vortex filaments are discussed and
some experimental measurements of vorticity distribution within a vortex

ring are shown (ref. 1).

The self-induced motion of vortex filaments is discussed and it is
shown how the method of matched asymptotic expansions can be used to remove
the logarithmic singularity in the classic cut-off formula for self-induced
motion of a curved filament to obtain the correct result for a filament with

arbitrary distribution of swirl and axial velocities (ref. 2).

|
|
|
1
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v (V) = + T ‘glxa‘\?’ L
| 4x l‘j'y‘ls
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where £ is chosen such that !

Ind=AnE+5 -A-C

where

a ~ vortex core size

A ~ swirl parameter

v/o
A= lim Fvidr -dnrfa
Ya-;ﬂ
V> “ nondimensional swirl velocity; (if vorticity is uniform A = %)
and &
C = é; .J r vv: dr ~ the nondimensional axial momentum flux
(o]

% A vortex filament with axial flow '"'slows down' (AU ) until the Kutta-
Joukowski 1ift force p{AU)Yis sufficient to balance the axial momentum flux

in the curved filament.

Several configurations of vortex filaments exist such that the self-
induced motions preserve their form. Examples are the ring, the helix, and
various combinations of line filaments. We have investigated the stability
of several of these self-preserving forms to long bending wave disturbances.
(The asymptotic result for self-induced motion can be used for long waves).
The Helical filament is unstable, ref. 3, the vortex pair is unstable, ref.
4, 5S. The instability of the vortex ring is more difficult since the
observed instability is a short-wave with a complex modal structure in the
core. This instability has been extensively discussed (ref. 2, 6, 7) as has

the corresponding instability for the single straight line filament in the

| presence of a straining flow (ref. 8). The physical mechanism of the insta-
bility of both the long and short wave is similar: vortex filaments see a
background flow that corresponds to a straining or stagnation point flow;
displacements along the diverging part of the flow in this field will diverge.
Self-induced rotation is a stabilizing effect enabling the vortex to move
into converging (stable) portions of the strain. If self-induced rotation

is weak (long waves) or absent (short waves at critical values of wavenumber)
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bending wave displacements diverge exponentially.

The presentation included a lecture demonstration of an unstable
vortex ring in a water tank made visible by hydrogen bubbles.
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